The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
A. Tian
J. Chim. Phys., 30 (1933) 665-712
Published online: 2017-05-29
This article has been cited by the following article(s):
38 articles
Classification of calorimeters
Stefan Perisanu, Ana Neacsu and Daniela Gheorghe Chemical Thermodynamics and Thermal Analysis 13 100124 (2024) https://doi.org/10.1016/j.ctta.2023.100124
Juan Carlos Moreno-Piraján, Liliana Giraldo Gutiérrez, Fernando Gómez-Granados and Diana Cristina Hernández-Monje 103 (2024) https://doi.org/10.1016/B978-0-443-13796-9.00005-8
Modelling the Decamerisation Cycle of PRDX1 and the Inhibition-like Effect on Its Peroxidase Activity
Christopher J. Barry, Ché S. Pillay and Johann M. Rohwer Antioxidants 12 (9) 1707 (2023) https://doi.org/10.3390/antiox12091707
Where did you come from and where are you heading to, thermal analysis of heating effects?
Jaroslav Šesták Journal of Thermal Analysis and Calorimetry 148 (23) 13141 (2023) https://doi.org/10.1007/s10973-023-12142-z
Thermal inertia and evaluation of reaction kinetics: A critical review
Václav Kočí, Jaroslav Šesták and Robert Černý Measurement 198 111354 (2022) https://doi.org/10.1016/j.measurement.2022.111354
The evaluation of nonisothermal thermoanalytical kinetics is simplified without the description of heat transfers, such as thermal inertia, which is not negligible, as indicated by Vyazovkin
Jaroslav Šesták International Journal of Chemical Kinetics 53 (9) 1050 (2021) https://doi.org/10.1002/kin.21495
Do we really know what temperature is: from Newton’s cooling law to an improved understanding of thermal analysis
Jaroslav Šesták Journal of Thermal Analysis and Calorimetry 142 (2) 913 (2020) https://doi.org/10.1007/s10973-019-09149-w
Ignoring heat inertia impairs accuracy of determination of activation energy in thermal analysis
Jaroslav Šesták International Journal of Chemical Kinetics 51 (1) 74 (2019) https://doi.org/10.1002/kin.21230
Determination of thermophysical properties for carbon-reinforced polymer-based composites up to 1000 °C
N. Grange, P. Tadini, K. Chetehouna, et al. Thermochimica Acta 659 157 (2018) https://doi.org/10.1016/j.tca.2017.11.014
Are nonisothermal kinetics fearing historical Newton’s cooling law, or are just afraid of inbuilt complications due to undesirable thermal inertia?
Jaroslav Šesták Journal of Thermal Analysis and Calorimetry 134 (3) 1385 (2018) https://doi.org/10.1007/s10973-018-7705-x
Evaluation of the professional worth of scientific papers, their citation responding and the publication authority
Jaroslav Šesták, Jaroslav Fiala and Konstantin S. Gavrichev Journal of Thermal Analysis and Calorimetry 131 (1) 463 (2018) https://doi.org/10.1007/s10973-017-6178-7
Šesták’s proposal of term “tempericity” for non-equilibrium temperature and modified Tykodi’s thermal science classification with regard to methods of thermal analysis
Pavel Holba Journal of Thermal Analysis and Calorimetry 127 (3) 2553 (2017) https://doi.org/10.1007/s10973-016-5659-4
Thermal Physics and Thermal Analysis
Pavel Holba and Jaroslav Šesták Hot Topics in Thermal Analysis and Calorimetry, Thermal Physics and Thermal Analysis 11 319 (2017) https://doi.org/10.1007/978-3-319-45899-1_15
Temperature dependence of activation energy of endothermic processes and related imperfections of non-isothermal kinetic evaluations
Pavel Holba Journal of Thermal Analysis and Calorimetry 129 (1) 609 (2017) https://doi.org/10.1007/s10973-017-6088-8
Thermal Physics and Thermal Analysis
Jaroslav Fiala and Jaroslav Šesták Hot Topics in Thermal Analysis and Calorimetry, Thermal Physics and Thermal Analysis 11 541 (2017) https://doi.org/10.1007/978-3-319-45899-1_25
The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations
Jaroslav Šesták Thermochimica Acta 611 26 (2015) https://doi.org/10.1016/j.tca.2015.04.026
Heat inertia and its role in thermal analysis
Pavel Holba and Jaroslav Šesták Journal of Thermal Analysis and Calorimetry 121 (1) 303 (2015) https://doi.org/10.1007/s10973-015-4486-3
Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
J. Rouquerol, F. Rouquerol, P. Llewellyn and R. Denoyel Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (2015) https://doi.org/10.1016/B978-0-12-409547-2.11009-1
Towards classification of calorimeters
W. Zielenkiewicz Journal of Thermal Analysis and Calorimetry 91 (2) 663 (2008) https://doi.org/10.1007/s10973-007-8431-y
Recent Advances, Techniques and Applications
Jean Rouquerol, I. Wadsö, T.J. Lever and P.J. Haines Handbook of Thermal Analysis and Calorimetry, Recent Advances, Techniques and Applications 5 13 (2008) https://doi.org/10.1016/S1573-4374(08)80005-2
Thermal Analysis of Polymeric Materials
Thermal Analysis of Polymeric Materials 279 (2005) https://doi.org/10.1007/3-540-26360-8_4
Louis Médard and Henri Tachoire 451 (1994) https://doi.org/10.4000/books.pup.1780
Pseudo-adiabatic calorimetry
F. Grønlund Journal of Thermal Analysis 40 (3) 907 (1993) https://doi.org/10.1007/BF02546849
Ordinary and heat flow calorimeters: a unified view
Finn Grønlund Thermochimica Acta 175 (1) 63 (1991) https://doi.org/10.1016/0040-6031(91)80247-G
Thermal Analysis
Bernhard Wunderlich Thermal Analysis 219 (1990) https://doi.org/10.1016/B978-0-12-765605-2.50009-1
Heat capacity and kinetic parameters in the glass transformation interval of diopside, anorthite and albite glass
R.M. Martens, M. Rosenhauer, H. Büttner and K. von Gehlen Chemical Geology 62 (1-2) 49 (1987) https://doi.org/10.1016/0009-2541(87)90057-X
Recent progress in numerical methods for the determination of thermokinetics
E. Cesari, P. C. Gravelle, J. Gutenbaum, J. Hatt, J. Navarro, J. L. Petit, R. Point, V. Torra, E. Utzig and W. Zielenkiewicz Journal of Thermal Analysis 20 (1) 47 (1981) https://doi.org/10.1007/BF01912996
Applications de la microcalorimétrie á conduction á l'étude thermocinétique de réactions lentes
C. Zahra and R. Romanetti Thermochimica Acta 9 (3) 229 (1974) https://doi.org/10.1016/0040-6031(74)80002-X
Études thermocinétiques de reactions lentes par microcalorimétrie à conduction
C. Zahra, L. Lagarde and R. Romanetti Thermochimica Acta 6 (2) 145 (1973) https://doi.org/10.1016/0040-6031(73)85022-1
Determination of Heat of Adsorption on Clean Solid Surfaces
Slavoj Černý and Vladimír Ponec Catalysis Reviews 2 (1) 249 (1969) https://doi.org/10.1080/01614946908066545
Thermokinetische Meßmethoden
F. Becker Chemie Ingenieur Technik 40 (19) 933 (1968) https://doi.org/10.1002/cite.330401902
Calorimetry of Non-reacting Systems
E.D. WEST and EDGAR F. WESTRUM Experimental Thermodynamics, Calorimetry of Non-reacting Systems 1 333 (1968) https://doi.org/10.1016/B978-1-4832-1327-9.50015-7
Advances in High Temperature Chemistry
Edgar F. Westrum Advances in High Temperature Chemistry 1 239 (1967) https://doi.org/10.1016/S0065-2741(13)70027-7
Recent Progress in Microcalorimetry
Recent Progress in Microcalorimetry 107 (1963) https://doi.org/10.1016/B978-0-08-010032-6.50024-4
THE HEAT OF NEUTRALIZATION OF STRONG ACIDS AND BASES IN HIGHLY DILUTE AQUEOUS SOLUTIONS
H. M. Papee, W. J. Canady and K. J. Laidler Canadian Journal of Chemistry 34 (12) 1677 (1956) https://doi.org/10.1139/v56-216
MICROCALORIMETRIC STUDIES OF POLYVINYL ACETATE SOLUTIONS
Hubert Daoust and Marcel Rinfret Canadian Journal of Chemistry 32 (5) 492 (1954) https://doi.org/10.1139/v54-062
Zweiter zusammenfassender Bericht über die Fortschritte der Calorimetrie und der Thermochemie in den letzten Jahren.
W. A. Roth Zeitschrift für Elektrochemie und angewandte physikalische Chemie 41 (2) 112 (1935) https://doi.org/10.1002/bbpc.19350410211
The spiral nebulae and the expansion of the universe
G C McVittie Reports on Progress in Physics 1 (1) 24 (1934) https://doi.org/10.1088/0034-4885/1/1/302