The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
H. G. Longuet-Higgins
J. Chim. Phys., 46 (1949) 268-275
Published online: 2017-06-07
This article has been cited by the following article(s):
66 articles
Topological Octet-Rule Implementation for Deltahedral Boron Hydrides and Related Zintl Clusters of the Main-Group Elements: Flexible Octet-Rule Fulfillment by Mixed 2- and 3-Center Fractional Bonding Scenarios
Frank R. Wagner and Yuri Grin Inorganic Chemistry 63 (43) 20205 (2024) https://doi.org/10.1021/acs.inorgchem.4c01390
Delocalization‐ratio analysis of 3‐center bonding in position‐space for closo‐boranes and related systems: Approaching the styx picture and beyond
Frank R. Wagner Journal of Computational Chemistry 45 (32) 2862 (2024) https://doi.org/10.1002/jcc.27486
Rongchao Jin 1 (2023) https://doi.org/10.1002/9781119788676.ch1
Ryky Nelson, Christina Ertural, Peter C. Müller and Richard Dronskowski 141 (2023) https://doi.org/10.1016/B978-0-12-823144-9.00120-5
Generalized Octet Rule with Fractional Occupancies for Boron
Shaogang Xu, Changchun He, Yujun Zhao, Xiaobao Yang and Hu Xu Journal of the American Chemical Society (2023) https://doi.org/10.1021/jacs.3c10370
Heterocyclic Mesomeric Betaines and Mesoionic Compounds
W. David Ollis and Christopher A. Ramsden Advances in Heterocyclic Chemistry, Heterocyclic Mesomeric Betaines and Mesoionic Compounds 137 229 (2022) https://doi.org/10.1016/bs.aihch.2021.11.001
Multi-center bonds as resonance hybrids: A real space perspective
L. Reuter, N. van Staalduinen, J. Simons, J. Ludovicy and A. Lüchow The Journal of Chemical Physics 156 (22) (2022) https://doi.org/10.1063/5.0090607
Progress in three-dimensional aromatic-like closo-dodecaborate
Xue Zhao, Ziqiong Yang, Hao Chen, et al. Coordination Chemistry Reviews 444 214042 (2021) https://doi.org/10.1016/j.ccr.2021.214042
Cage–···Cage– Interaction: Boron Cluster-Based Noncovalent Bond and Its Applications in Solid-State Materials
Deshuang Tu, Jiaxin Li, Fangxiang Sun, et al. JACS Au 1 (11) 2047 (2021) https://doi.org/10.1021/jacsau.1c00348
Polyhedral [M2B5] Metallaborane Clusters and Derivatives: An Overview of Their Structural Features and Chemical Bonding
Rini Prakash, Jean-François Halet and Sundargopal Ghosh Molecules 25 (14) 3179 (2020) https://doi.org/10.3390/molecules25143179
The nido‐Cage⋅⋅⋅π Bond: A Non‐covalent Interaction between Boron Clusters and Aromatic Rings and Its Applications
Deshuang Tu, Hong Yan, Jordi Poater and Miquel Solà Angewandte Chemie International Edition 59 (23) 9018 (2020) https://doi.org/10.1002/anie.201915290
Three-center two-electron bonds in the boranes B2H6 and B3H8− from the quantum interference perspective
David Wilian Oliveira de Sousa and Marco Antonio Chaer Nascimento Theoretical Chemistry Accounts 139 (8) (2020) https://doi.org/10.1007/s00214-020-02654-4
The nido‐Cage⋅⋅⋅π Bond: A Non‐covalent Interaction between Boron Clusters and Aromatic Rings and Its Applications
Deshuang Tu, Hong Yan, Jordi Poater and Miquel Solà Angewandte Chemie 132 (23) 9103 (2020) https://doi.org/10.1002/ange.201915290
Nature of the chemical bonding in D3h [MH3M]+ cations (M = Be, Mg)
Fabio E. Penotti, David L. Cooper, Peter B. Karadakov and Robert Ponec International Journal of Quantum Chemistry 120 (11) (2020) https://doi.org/10.1002/qua.26183
Theoretical investigations of the chemical bonding in MM′O2 clusters (M, M′ = Be, Mg, Ca)
Robert Ponec and David L. Cooper Journal of Molecular Modeling 24 (9) (2018) https://doi.org/10.1007/s00894-018-3764-y
Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation
Elodie Decuypère, Lucie Plougastel, Davide Audisio and Frédéric Taran Chem. Commun. 53 (84) 11515 (2017) https://doi.org/10.1039/C7CC06405E
Photoelectron spectroscopy of B4O4−: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters
Wen-Juan Tian, Li-Juan Zhao, Qiang Chen, Ting Ou, Hong-Guang Xu, Wei-Jun Zheng, Hua-Jin Zhai and Si-Dian Li The Journal of Chemical Physics 142 (13) (2015) https://doi.org/10.1063/1.4916386
Boron
Musiri M. Balakrishnarajan and Pattath D. Pancharatna Challenges and Advances in Computational Chemistry and Physics, Boron 20 181 (2015) https://doi.org/10.1007/978-3-319-22282-0_7
On the Mechanism of Dihydrogen Activation by Frustrated Lewis Pairs. Insights from the Analysis of Domain Averaged Fermi Holes and Generalized Population Analysis
Robert Ponec and Pavel Beran The Journal of Physical Chemistry A 117 (12) 2656 (2013) https://doi.org/10.1021/jp4017932
Bridging η2‐BO in B2(BO)3− and B3(BO)3− Clusters: Boronyl Analogs of Boranes
Hua‐Jin Zhai, Jin‐Chang Guo, Si‐Dian Li and Lai‐Sheng Wang ChemPhysChem 12 (14) 2549 (2011) https://doi.org/10.1002/cphc.201100553
Quantum Monte Carlo calculations of the dimerization energy of borane
Francesco Fracchia, Dario Bressanini and Gabriele Morosi The Journal of Chemical Physics 135 (9) (2011) https://doi.org/10.1063/1.3629778
Behavior of hydrogen ions, atoms, and molecules inα-boron studied using density functional calculations
Philipp Wagner, Christopher P. Ewels, Irene Suarez-Martinez, et al. Physical Review B 83 (2) (2011) https://doi.org/10.1103/PhysRevB.83.024101
439 (2010) https://doi.org/10.1002/9780470689493.refs
Analytic Models of Domain‐Averaged Fermi Holes: A New Tool for the Study of the Nature of Chemical Bonds
Robert Ponec, David L. Cooper and Andreas Savin Chemistry – A European Journal 14 (11) 3338 (2008) https://doi.org/10.1002/chem.200701727
From Icosahedral Boron Subhalides to Octahedral Metalloid Aluminum and Gallium Analogues: Quo vadis, Wade's Rules?
Katharina Koch, Ralf Burgert and Hansgeorg Schnöckel Angewandte Chemie International Edition 46 (30) 5795 (2007) https://doi.org/10.1002/anie.200701020
Closo-alanes (Al4H4, AlnHn+2, 4 ≤ n ≤ 8): A New Chapter in Aluminum Hydride Chemistry
A. Grubisic, X. Li, S. T. Stokes, et al. Journal of the American Chemical Society 129 (18) 5969 (2007) https://doi.org/10.1021/ja0700404
Von ikosaedrischen Bor‐ zu oktaedrischen metalloiden Aluminium‐ und Galliumsubhalogeniden: Quo vadis, Wade‐Regel?
Katharina Koch, Ralf Burgert and Hansgeorg Schnöckel Angewandte Chemie 119 (30) 5897 (2007) https://doi.org/10.1002/ange.200701020
Generalized population analysis of three‐center two‐electron bonding
Robert Ponec and David L. Cooper International Journal of Quantum Chemistry 97 (6) 1002 (2004) https://doi.org/10.1002/qua.20007
Evidence for 5-Center 4-Electron Bonding in (C···H···C···H···C) Array
Robert Ponec and Gleb Yuzhakov The Journal of Organic Chemistry 68 (21) 8284 (2003) https://doi.org/10.1021/jo034676z
(Cyclobutadiene)iron TricarbonylA Case of Theory before Experiment
Dietmar Seyferth Organometallics 22 (1) 2 (2003) https://doi.org/10.1021/om020946c
The synaptic order: a key concept to understand multicenter bonding
Bernard Silvi Journal of Molecular Structure 614 (1-3) 3 (2002) https://doi.org/10.1016/S0022-2860(02)00231-4
On the nature of bonding in N 5 + ion
Robert Ponec, Jana Roithová, X Gironés and Karl Jug Journal of Molecular Structure: THEOCHEM 545 (1-3) 255 (2001) https://doi.org/10.1016/S0166-1280(01)00404-3
Multicenter bonding in open-shell systems. A nonlinear population analysis approach
Robert Ponec, Alicia Torre, Luis Lain and Roberto C. Bochicchio International Journal of Quantum Chemistry 77 (4) 710 (2000) https://doi.org/10.1002/(SICI)1097-461X(2000)77:4<710::AID-QUA3>3.0.CO;2-X
Structural and Electronic Paradigms in Cluster Chemistry
Roy L. Johnston Structure and Bonding, Structural and Electronic Paradigms in Cluster Chemistry 87 1 (1997) https://doi.org/10.1007/BFb0018029
Electron pairing and chemical bonds. On the accuracy of the electron pair model of chemical bond
Robert Ponec and Filip Uhlik Journal of Molecular Structure: THEOCHEM 391 (1-2) 159 (1997) https://doi.org/10.1016/S0166-1280(96)04728-8
Nonlinear population analysis from geminal expansion of pair densities
Robert Ponec and Roberto C. Bochicchio International Journal of Quantum Chemistry 54 (2) 99 (1995) https://doi.org/10.1002/qua.560540205
Molecular Geometry
Alison Rodger and Mark Rodger Molecular Geometry 71 (1995) https://doi.org/10.1016/B978-0-7506-2295-0.50008-X
Advances in Organometallic Chemistry
Robert E. Williams Advances in Organometallic Chemistry 36 1 (1994) https://doi.org/10.1016/S0065-3055(08)60388-3
Molecular structure and function
William N. Lipscomb International Journal of Quantum Chemistry 40 (S18) 1 (1991) https://doi.org/10.1002/qua.560400706
Molecular structure and function
William N. Lipscomb International Journal of Quantum Chemistry 40 (S25) 1 (1991) https://doi.org/10.1002/qua.560400806
Bonding in boranes
Alison Rodger, Susan M. Colwell and Brian F.G. Johnson Polyhedron 9 (8) 1035 (1990) https://doi.org/10.1016/S0277-5387(00)81291-7
Theoretical Approaches
D. Michael, P. Mingos and Roy L. Johnston Structure and Bonding, Theoretical Approaches 68 29 (1987) https://doi.org/10.1007/3-540-18058-3_2
A theoretical investigation of the nuclear and electronic structure of some XYHn(q) small molecules and ions
M. Sana and G. Leroy Journal of Molecular Structure: THEOCHEM 151 307 (1987) https://doi.org/10.1016/0166-1280(87)85066-2
New Trends in Chemistry
Lawrence Barton Topics in Current Chemistry, New Trends in Chemistry 100 169 (1982) https://doi.org/10.1007/BFb0119436
Molecular orbital study of the bridge bonding in an electron deficient molecule [(CH3)2ALH]2
Michel Pelissier, Jean Paul Malrieu, Alain Serafini and Jean Fran�ois Labarre Theoretica Chimica Acta 56 (3) 175 (1980) https://doi.org/10.1007/BF00552470
Ground states of molecules. 47. MNDO studies of boron hydrides and boron hydride anions
Michael J. S. Dewar and Michael L. McKee Inorganic Chemistry 17 (6) 1569 (1978) https://doi.org/10.1021/ic50184a036
The Boranes and Their Relatives
William N. Lipscomb Science 196 (4294) 1047 (1977) https://doi.org/10.1126/science.196.4294.1047
Die Borane und ihre Derivate (Nobel‐Vortrag)
William N. Lipscomb Angewandte Chemie 89 (10) 685 (1977) https://doi.org/10.1002/ange.19770891004
Advances in Inorganic Chemistry and Radiochemistry
K. Wade Advances in Inorganic Chemistry and Radiochemistry 18 1 (1976) https://doi.org/10.1016/S0065-2792(08)60027-8
Advances in Heterocyclic Chemistry Volume 19
W. David Ollis and Christopher A. Ramsden Advances in Heterocyclic Chemistry, Advances in Heterocyclic Chemistry Volume 19 19 1 (1976) https://doi.org/10.1016/S0065-2725(08)60230-5
Boron Hydride Chemistry
WILLIAM N. LIPSCOMB Boron Hydride Chemistry 39 (1975) https://doi.org/10.1016/B978-0-12-509650-8.50007-5
NMR study of organosilicon compounds. III—Silicon‐29, nitrogen‐14, carbon‐13 and proton NMR spectra of silylakylamines
J. Schraml, Nguyen‐Duc‐Chuy, V. Chvalovský, M. Mägi and E. Lippmaa Organic Magnetic Resonance 7 (8) 379 (1975) https://doi.org/10.1002/mrc.1270070806
Boron Hydride Chemistry
EARL L. MUETTERTIES Boron Hydride Chemistry 1 (1975) https://doi.org/10.1016/B978-0-12-509650-8.50006-3
The electronic structure of the diborane molecule
Stephen Wilson and Joseph Gerratt Molecular Physics 30 (3) 765 (1975) https://doi.org/10.1080/00268977500102321
E.S.R. spectra of diboranyl radicals in the solid states
A. Hasegawa and J. Sohma Molecular Physics 27 (2) 389 (1974) https://doi.org/10.1080/00268977400100371
E.S.R. spectra of the radicals produced in γ-irradiated diborane in the solid state
Akinori Hasegawa and Junkichi Sohma Molecular Physics 24 (5) 1177 (1972) https://doi.org/10.1080/00268977200102261
Electron Deficient Compounds
K. Wade Electron Deficient Compounds 6 (1971) https://doi.org/10.1007/978-1-4684-6054-4_2
Localized Bonds in SCF Wavefunctions for Polyatomic Molecules. I. Diborane
Eugene Switkes, Richard M. Stevens, William N. Lipscomb and Marshall D. Newton The Journal of Chemical Physics 51 (5) 2085 (1969) https://doi.org/10.1063/1.1672303
Framework Rearrangement in Boranes and Carboranes
William N. Lipscomb Science 153 (3734) 373 (1966) https://doi.org/10.1126/science.153.3734.373
Molecular Orbital Calculations of the Electronic Structure of the Sydnones
Lemont B. Kier and Edward B. Roche Journal of Pharmaceutical Sciences 55 (8) 807 (1966) https://doi.org/10.1002/jps.2600550811
Molecular Orbitals of Diborane in Terms of a Gaussian Basis
Louis Burnelle and Joyce J. Kaufman The Journal of Chemical Physics 43 (10) 3540 (1965) https://doi.org/10.1063/1.1696513
Advances in Inorganic Chemistry and Radiochemistry
William N. Lipscomb Advances in Inorganic Chemistry and Radiochemistry 1 117 (1959) https://doi.org/10.1016/S0065-2792(08)60253-8
Electronic Structure of Diborane
Masatoshi Yamazaki The Journal of Chemical Physics 27 (6) 1401 (1957) https://doi.org/10.1063/1.1744013
A molecular orbital treatment of diborane as a four-centre, four-electron problem
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 235 (1202) 395 (1956) https://doi.org/10.1098/rspa.1956.0092
The electronic structure of the borides
M
B
6
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 224 (1158) 336 (1954) https://doi.org/10.1098/rspa.1954.0162
The Valence Structure of the Boron Hydrides
W. H. Eberhardt, Bryce Crawford and William N. Lipscomb The Journal of Chemical Physics 22 (6) 989 (1954) https://doi.org/10.1063/1.1740320