The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
H. B. G. Casimir
J. Chim. Phys., 46 (1949) 407-410
Published online: 2017-06-07
This article has been cited by the following article(s):
85 articles
Dynamical Casimir effects: The need for nonlocality in time-varying dispersive nanophotonics
S. Ali Hassani Gangaraj, George W. Hanson and Francesco Monticone Physical Review A 110 (4) (2024) https://doi.org/10.1103/PhysRevA.110.L041502
Few-Neutron Systems with the Long-Range Casimir-Polder Force
R. Higa and J. F. Babb Brazilian Journal of Physics 51 (2) 231 (2021) https://doi.org/10.1007/s13538-020-00849-5
Science and technology of the Casimir effect
Alexander Stange, David K. Campbell and David J. Bishop Physics Today 74 (1) 42 (2021) https://doi.org/10.1063/PT.3.4656
Casimir force on a light front
S.S. Chabysheva and J.R. Hiller Progress in Particle and Nuclear Physics 117 103836 (2021) https://doi.org/10.1016/j.ppnp.2020.103836
C. Climent, F. J. Garcia-Vidal and J. Feist 343 (2021) https://doi.org/10.1039/9781839163043-00343
Plasmonic Nanocavities Enable Self‐Induced Electrostatic Catalysis
Clàudia Climent, Javier Galego, Francisco J. Garcia‐Vidal and Johannes Feist Angewandte Chemie 131 (26) 8790 (2019) https://doi.org/10.1002/ange.201901926
Plasmonic Nanocavities Enable Self‐Induced Electrostatic Catalysis
Clàudia Climent, Javier Galego, Francisco J. Garcia‐Vidal and Johannes Feist Angewandte Chemie International Edition 58 (26) 8698 (2019) https://doi.org/10.1002/anie.201901926
Nanotube Superfiber Materials
Fabrizio Pinto Nanotube Superfiber Materials 729 (2019) https://doi.org/10.1016/B978-0-12-812667-7.00029-X
Casimir-Polder interactions with massive photons: Implications for BSM physics
L. Mattioli, A. M. Frassino and O. Panella Physical Review D 100 (11) (2019) https://doi.org/10.1103/PhysRevD.100.116023
Fundamentals of van der Waals and Casimir Interactions
Bo E. Sernelius Springer Series on Atomic, Optical, and Plasma Physics, Fundamentals of van der Waals and Casimir Interactions 102 69 (2018) https://doi.org/10.1007/978-3-319-99831-2_5
Non-Relativistic QED Theory of the van der Waals Dispersion Interaction
Akbar Salam SpringerBriefs in Molecular Science, Non-Relativistic QED Theory of the van der Waals Dispersion Interaction 39 (2016) https://doi.org/10.1007/978-3-319-45606-5_3
A correspondence principle
Barry D. Hughes and Barry W. Ninham Physica A: Statistical Mechanics and its Applications 443 495 (2016) https://doi.org/10.1016/j.physa.2015.09.024
Finite difference computation of Casimir forces
Fabrizio Pinto Journal of Physics: Conference Series 738 012134 (2016) https://doi.org/10.1088/1742-6596/738/1/012134
Fabrizio Pinto (2012) https://doi.org/10.2514/6.2012-3713
The Casimir Effect and the Vacuum Energy: Duality in the Physical Interpretation
J. Cugnon Few-Body Systems 53 (1-2) 181 (2012) https://doi.org/10.1007/s00601-011-0250-9
Plasmonic contribution to the van der Waals energy in strongly interacting bilayers
Murat Tas and B. Tanatar Physical Review B 81 (11) (2010) https://doi.org/10.1103/PhysRevB.81.115326
Molecular Forces and Self Assembly
Molecular Forces and Self Assembly 84 (2010) https://doi.org/10.1017/CBO9780511811531.006
Casimir forces between solids can be repulsive
Johanna Miller Physics Today 62 (2) 19 (2009) https://doi.org/10.1063/1.3086088
Semiempirical estimation of correlation energy corrections to ionization potentials and dissociation energies for open-shell systems
H. Önder Pamuk and Carl Trindle International Journal of Quantum Chemistry 14 (S12) 271 (2009) https://doi.org/10.1002/qua.560140821
Casimir forces: Still surprising after 60 years
Steve K. Lamoreaux Physics Today 60 (2) 40 (2007) https://doi.org/10.1063/1.2711635
Casimir–Polder forces from density matrix formalism
T N C Mendes and C Farina Journal of Physics A: Mathematical and General 39 (21) 6533 (2006) https://doi.org/10.1088/0305-4470/39/21/S51
Finite-temperature Casimir force between metal plates: full inclusion of spatial dispersion resolves a long-standing controversy
Bo E Sernelius Journal of Physics A: Mathematical and General 39 (21) 6741 (2006) https://doi.org/10.1088/0305-4470/39/21/S75
Purely electronic zero-phonon lines in optical data storage and processing
Karl K. Rebane Physical Chemistry Chemical Physics 7 (5) 723 (2005) https://doi.org/10.1039/b417730b
Calculating Casimir energies in renormalizable quantum field theory
Kimball A. Milton Physical Review D 68 (6) (2003) https://doi.org/10.1103/PhysRevD.68.065020
On the force between an electrically polarizable atom and a magnetically polarizable one
C Farina, F C Santos and A C Tort Journal of Physics A: Mathematical and General 35 (10) 2477 (2002) https://doi.org/10.1088/0305-4470/35/10/311
Purely electronic zero-phonon line as the foundation stone for high resolution matrix spectroscopy, single impurity molecule spectroscopy, persistent spectral hole burning
Karl K Rebane Journal of Luminescence 100 (1-4) 219 (2002) https://doi.org/10.1016/S0022-2313(02)00455-6
Contact, Adhesion and Rupture of Elastic Solids
Daniel Maugis Springer Series in Solid-State Sciences, Contact, Adhesion and Rupture of Elastic Solids 130 1 (2000) https://doi.org/10.1007/978-3-662-04125-3_1
Point and line boundaries in scalar Casimir theory
Alfred Actor Journal of Mathematical Physics 40 (9) 4185 (1999) https://doi.org/10.1063/1.532960
Interaction energy for a pair of quantum wells
Bo E. Sernelius and P. Björk Physical Review B 57 (11) 6592 (1998) https://doi.org/10.1103/PhysRevB.57.6592
Unified treatment of some Casimir energies and Lamb shifts: A dielectric between two ideal conductors
Martin Schaden, Larry Spruch and Fei Zhou Physical Review A 57 (2) 1108 (1998) https://doi.org/10.1103/PhysRevA.57.1108
Stimulated Raman scattering and spontaneous Raman solitons in ammonia
M.O. Baumgartner, D.P. Scherrer and F.K. Kneubühl Infrared Physics & Technology 39 (7) 457 (1998) https://doi.org/10.1016/S1350-4495(98)00029-2
Dressed zero-point field correlations and the non-additive three-body van der Waals potential
M Cirone and R Passante Journal of Physics B: Atomic, Molecular and Optical Physics 30 (23) 5579 (1997) https://doi.org/10.1088/0953-4075/30/23/020
Vacuum field correlations and the three-body Casimir - Polder potential
M Cirone and R Passante Journal of Physics B: Atomic, Molecular and Optical Physics 29 (9) 1871 (1996) https://doi.org/10.1088/0953-4075/29/9/029
Long-Range (Casimir) Interactions
Larry Spruch Science 272 (5267) 1452 (1996) https://doi.org/10.1126/science.272.5267.1452
The Quantum Vacuum
Peter W. Milonni The Quantum Vacuum 77 (1994) https://doi.org/10.1016/B978-0-08-057149-2.50007-2
Retarded Casimir interaction in the asymptotic domain of an electron and a dielectric wall
Yoel Tikochinsky and Larry Spruch Physical Review A 48 (6) 4223 (1993) https://doi.org/10.1103/PhysRevA.48.4223
Long-Range Casimir Forces
Larry Spruch Long-Range Casimir Forces 1 (1993) https://doi.org/10.1007/978-1-4899-1228-2_1
Elementary approximate derivations of some retarded Casimir interactions involving one or two dielectric walls
Larry Spruch and Yoel Tikochinsky Physical Review A 48 (6) 4213 (1993) https://doi.org/10.1103/PhysRevA.48.4213
Retarded electric and magnetic Casimir interaction of a polarizable system and a dielectric permeable wall
Yoel Tikochinsky and Larry Spruch Physical Review A 48 (6) 4236 (1993) https://doi.org/10.1103/PhysRevA.48.4236
Physics in the Making
C.M. Hargreaves Physics in the Making 341 (1989) https://doi.org/10.1016/B978-0-444-88121-2.50020-8
Physics in the Making
M.J. Sparnaay Physics in the Making 235 (1989) https://doi.org/10.1016/B978-0-444-88121-2.50014-2
Physics in the Making
M.J. Sparnaay Physics in the Making 235 (1989) https://doi.org/10.1016/B978-0-444-88019-2.50014-3
Physics in the Making
C.M. Hargreaves Physics in the Making 341 (1989) https://doi.org/10.1016/B978-0-444-88019-2.50020-9
The Dielectric Function of Condensed Systems
Yu.S. BARASH and V.L. GINZBURG Modern Problems in Condensed Matter Sciences, The Dielectric Function of Condensed Systems 24 389 (1989) https://doi.org/10.1016/B978-0-444-87366-8.50012-6
Vacuum Confinement Effects on Molecular Dynamics in a Microscopic Cavity
Francesco de Martini Physica Scripta T21 58 (1988) https://doi.org/10.1088/0031-8949/1988/T21/011
Physics of Strong Fields
Günter Plunien, Berndt Müller and Walter Greiner Physics of Strong Fields 899 (1987) https://doi.org/10.1007/978-1-4613-1889-7_50
Physical properties of ordered ultrathin organic films
Terence W. Barrett Thin Solid Films 152 (1-2) 67 (1987) https://doi.org/10.1016/0040-6090(87)90411-1
Casimir energy at finite temperature
G. Plunien, B. Müller and W. Greiner Physica A: Statistical Mechanics and its Applications 145 (1-2) 202 (1987) https://doi.org/10.1016/0378-4371(87)90247-0
Physics of Strong Fields
H. B. G. Casimir Physics of Strong Fields 957 (1987) https://doi.org/10.1007/978-1-4613-1889-7_52
pH control of the third virial coefficient of hyaluronate solutions calculated from van der Waals forces by means of the Lifshitz-McLachlan susceptibility theory
Terence W. Barrett Journal of Biological Physics 14 (2) 57 (1986) https://doi.org/10.1007/BF01858694
Retarded, or Casimir, Long-Range Potentials
Larry Spruch Physics Today 39 (11) 37 (1986) https://doi.org/10.1063/1.881043
Spontaneous free-particle acceleration in quantum electrodynamics with a real electromagnetic zero-point field
A. Rueda Physical Review A 30 (5) 2221 (1984) https://doi.org/10.1103/PhysRevA.30.2221
Very-long-range static dipole moment of two coupled systems
J.M. Vigoureux and L. Galatry Chemical Physics Letters 98 (4) 324 (1983) https://doi.org/10.1016/0009-2614(83)80216-4
Properties of the vacuum. I. Mechanical and thermodynamic
Jan Ambjørn and Stephen Wolfram Annals of Physics 147 (1) 1 (1983) https://doi.org/10.1016/0003-4916(83)90065-9
Quantum electrodynamics with nonrelativistic sources. III. Intermolecular interactions
E. A. Power and T. Thirunamachandran Physical Review A 28 (5) 2671 (1983) https://doi.org/10.1103/PhysRevA.28.2671
Retarded Van der Waals potential between a conducting plane and a polarizable particle
T. Datta and L.H. Ford Physics Letters A 83 (7) 314 (1981) https://doi.org/10.1016/0375-9601(81)90146-8
Thermal effects of acceleration through random classical radiation
Timothy H. Boyer Physical Review D 21 (8) 2137 (1980) https://doi.org/10.1103/PhysRevD.21.2137
Foundations of Radiation Theory and Quantum Electrodynamics
Timothy H. Boyer Foundations of Radiation Theory and Quantum Electrodynamics 49 (1980) https://doi.org/10.1007/978-1-4757-0671-0_5
Vacuum fluctuation and retardation effects on long-range potentials
Larry Spruch and Edward J. Kelsey Physical Review A 18 (3) 845 (1978) https://doi.org/10.1103/PhysRevA.18.845
Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory
P.W. Milonni Physics Reports 25 (1) 1 (1976) https://doi.org/10.1016/0370-1573(76)90037-5
Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation
Timothy H. Boyer Physical Review D 11 (4) 790 (1975) https://doi.org/10.1103/PhysRevD.11.790
Temperature dependence of Van der Waals forces in classical electrodynamics with classical electromagnetic zero-point radiation
Timothy H. Boyer Physical Review A 11 (5) 1650 (1975) https://doi.org/10.1103/PhysRevA.11.1650
Long-range retarded intermolecular forces
E. A. Power Physical Review A 10 (3) 756 (1974) https://doi.org/10.1103/PhysRevA.10.756
Statistics of classical blackbody radiation with ground state
O. Theimer and P. R. Peterson Physical Review D 10 (12) 3962 (1974) https://doi.org/10.1103/PhysRevD.10.3962
A semi-classical theory of the dispersion energy of atoms and molecules
J. Mahanty Il Nuovo Cimento B Series 11 22 (1) 110 (1974) https://doi.org/10.1007/BF02737463
Van der Waals forces and zero-point energy for dielectric and permeable materials
Timothy H. Boyer Physical Review A 9 (5) 2078 (1974) https://doi.org/10.1103/PhysRevA.9.2078
Retarded van der Waals Forces at All Distances Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation
Timothy H. Boyer Physical Review A 7 (6) 1832 (1973) https://doi.org/10.1103/PhysRevA.7.1832
Unretarded London-van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation
Timothy H. Boyer Physical Review A 6 (1) 314 (1972) https://doi.org/10.1103/PhysRevA.6.314
Asymptotic Retarded van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation
Timothy H. Boyer Physical Review A 5 (4) 1799 (1972) https://doi.org/10.1103/PhysRevA.5.1799
Moment theory bounds on long-range casimir—polder interactions
P.W. Langhoff Chemical Physics Letters 12 (2) 223 (1971) https://doi.org/10.1016/0009-2614(71)85051-0
Retarded Van der Waals interaction in a system of harmonic oscillators
M.J. Renne Physica 53 (2) 193 (1971) https://doi.org/10.1016/0031-8914(71)90070-X
Specific Heat of a Classical, Plane, Rigid, Dipole Rotator in Electromagnetic Zero-Point Radiation
Timothy H. Boyer Physical Review D 1 (8) 2257 (1970) https://doi.org/10.1103/PhysRevD.1.2257
Quantum zero-point energy and long-range forces
Timothy H Boyer Annals of Physics 56 (2) 474 (1970) https://doi.org/10.1016/0003-4916(70)90027-8
Derivation of the Blackbody Radiation Spectrum without Quantum Assumptions
Timothy H. Boyer Physical Review 182 (5) 1374 (1969) https://doi.org/10.1103/PhysRev.182.1374
Cutoff-Independent Character of Electromagnetic Zero-Point Forces
Timothy H. Boyer Physical Review 185 (5) 2039 (1969) https://doi.org/10.1103/PhysRev.185.2039
Recalculations of Long-Range van der Waals Potentials
Timothy H. Boyer Physical Review 180 (1) 19 (1969) https://doi.org/10.1103/PhysRev.180.19
Quantum Electromagnetic Zero-Point Energy and Retarded Dispersion Forces
Timothy H. Boyer Physical Review 174 (5) 1631 (1968) https://doi.org/10.1103/PhysRev.174.1631
Temperature correction to the casimir effect
J. Mehra Physica 37 (1) 145 (1967) https://doi.org/10.1016/0031-8914(67)90115-2
Edwin A. Power 12 167 (1967) https://doi.org/10.1002/9780470143582.ch4
Radiation damping of degenerate states: III. Fourth-order resonance interaction
M R Philpott Proceedings of the Physical Society 91 (3) 520 (1967) https://doi.org/10.1088/0370-1328/91/3/302
Long-Range Retarded Potentials between Molecules
L. Gomberoff, R. R. McLone and E. A. Power The Journal of Chemical Physics 44 (11) 4148 (1966) https://doi.org/10.1063/1.1726597
van der Waals Forces between Conducting Bodies
G. W. Kattawar and M. Eisner The Journal of Chemical Physics 43 (3) 863 (1965) https://doi.org/10.1063/1.1696860
Low-Energy Scattering of a Charged Particle by a Neutral Polarizable System
Thomas F. O'Malley, Leonard Rosenberg and Larry Spruch Physical Review 125 (4) 1300 (1962) https://doi.org/10.1103/PhysRev.125.1300
Attractive Forces between Long Saturated Chains at Short Distances
Lionel Salem The Journal of Chemical Physics 37 (9) 2100 (1962) https://doi.org/10.1063/1.1733431
On the radiative contributions to the Van der Waals force
E. A. Power and S. Zienau Il Nuovo Cimento 6 (1) 7 (1957) https://doi.org/10.1007/BF02827754