The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. J. Diefendorf
J. Chim. Phys., 57 (1960) 815-821
Published online: 2017-05-28
This article has been cited by the following article(s):
54 articles
Pressure induced transformation of biomass to a highly durable, low friction film on steel
Joseph L. Lanigan, Laura Faas, Thomas Butcher, William A. Skipper, Mariana P. Silva, Roger Lewis and Leonardo D. Gomez Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 480 (2283) (2024) https://doi.org/10.1098/rspa.2023.0450
Advancements in the study of carbon deposition behavior during the metallurgical high-reductive potential gas reforming and heating processes
Xingjian Deng, Lianda Zhao, Tian Gao, Qingguo Xue, Jingsong Wang and Haibin Zuo Fuel Processing Technology 257 108087 (2024) https://doi.org/10.1016/j.fuproc.2024.108087
Unveiling the existence and role of a liquid phase in a high temperature (1400 °C) pyrolytic carbon deposition process
Germercy Paredes, Thierry Ondarçuhu, Marc Monthioux and Fabrice Piazza Carbon Trends 5 100117 (2021) https://doi.org/10.1016/j.cartre.2021.100117
Materials Science and Engineering of Carbon: Fundamentals
Michio Inagaki and Feiyu Kang Materials Science and Engineering of Carbon: Fundamentals 17 (2014) https://doi.org/10.1016/B978-0-12-800858-4.00002-4
Self-Assembly of Graphene on Carbon Nanotube Surfaces
Kaiyuan Li, Gyula Eres, Jane Howe, et al. Scientific Reports 3 (1) (2013) https://doi.org/10.1038/srep02353
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 138 (2012) https://doi.org/10.1533/9780857098269.138
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 344 (2012) https://doi.org/10.1533/9780857098269.344
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 27 (2012) https://doi.org/10.1533/9780857098269.27
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 406 (2012) https://doi.org/10.1533/9780857098269.406
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 414 (2012) https://doi.org/10.1533/9780857098269.414
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 1 (2012) https://doi.org/10.1533/9780857098269.1
Coal Science and Engineering
Coal Science and Engineering 426 (2012) https://doi.org/10.1016/B978-0-85709-813-9.50013-8
Gérard Vignoles, René Pailler and Francis Teyssandier 11 (2012) https://doi.org/10.1002/9781118217528.ch2
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 76 (2012) https://doi.org/10.1533/9780857098269.76
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 145 (2012) https://doi.org/10.1533/9780857098269.145
Coal Science and Engineering
B. Mazumder Coal Science and Engineering 100 (2012) https://doi.org/10.1533/9780857098269.100
Chemical vapour deposition of pyrolytic carbon on carbon nanotubes
Marc Monthioux, Hatem Allouche and Ronald L. Jacobsen Carbon 44 (15) 3183 (2006) https://doi.org/10.1016/j.carbon.2006.07.001
Fibers and Composites
X Bourrat World of Carbon, Fibers and Composites 20030913 (2003) https://doi.org/10.1201/9780203166789.pt3
Fibers and Composites
P Delha_s World of Carbon, Fibers and Composites 20030913 (2003) https://doi.org/10.1201/9780203166789.ch5
Chemical vapor deposition of pyrolytic carbon on carbon nanotubes
Hatem Allouche, Marc Monthioux and Ronald L Jacobsen Carbon 41 (15) 2897 (2003) https://doi.org/10.1016/S0008-6223(03)00329-4
Pyrocarbons
Agnès Oberlin Carbon 40 (1) 7 (2002) https://doi.org/10.1016/S0008-6223(01)00138-5
Mechanisms of carbon deposition—a kinetic approach
Zi Jun Hu and Klaus J. Hüttinger Carbon 40 (4) 624 (2002) https://doi.org/10.1016/S0008-6223(01)00316-5
Chemical vapor deposition and infiltration processes of carbon materials
P Delhaes Carbon 40 (5) 641 (2002) https://doi.org/10.1016/S0008-6223(01)00195-6
The role of pentagons in the growth of laminar pyrocarbon
Xavier Bourrat, Jerome Lavenac, Francis Langlais and Roger Naslain Carbon 39 (15) 2376 (2001) https://doi.org/10.1016/S0008-6223(01)00223-8
Pressure-pulsed chemical vapour infiltration of pyrolytic carbon into porous carbon or two-dimensional-carbon/SiC particulate preforms from C6H6–H2–N2
Y Ohzawa, K Watabe and K Sugiyama Journal of Materials Science 33 (2) 435 (1998) https://doi.org/10.1023/A:1004336200479
Emergent Process Methods for High-Technology Ceramics
Richard W. Kidd, David A. Seifert and M. F. Browning Emergent Process Methods for High-Technology Ceramics 381 (1984) https://doi.org/10.1007/978-1-4684-8205-8_29
Decomposition du methane sur le carbone aux tres hautes temperatures et sous basses pressions
André Wehrer, Pierre Wehrer and Xavier Duval Carbon 22 (6) 551 (1984) https://doi.org/10.1016/0008-6223(84)90088-5
Decomposition de l'acetylene, de l'ethylene et du benzene sur le carbone aux tres hautes temperatures et sous de basses pressions
André Wehrer, Pierre Wehrer and Xavier Duval Carbon 21 (3) 247 (1983) https://doi.org/10.1016/0008-6223(83)90088-X
Diagramme d'existence et proprietes de composites carbone-carbone
P. Loll, P. Delhaes, A. Pacault and A. Pierre Carbon 15 (6) 383 (1977) https://doi.org/10.1016/0008-6223(77)90327-X
In Situ Regeneration of Fusion Reactor First Walls
J. Chin and T. Ohkawa Nuclear Technology 32 (2) 115 (1977) https://doi.org/10.13182/NT77-A31717
Transmission electron microscopy of isotropic pyrocarbon deposited on spherical particles for high temperature reactor
Joseph Pelissier and Louis Lombard Carbon 13 (3) 205 (1975) https://doi.org/10.1016/0008-6223(75)90233-X
Beschichtung von Kohlenstoff‐Fäden
Erich Fitzer, Dieter Kehr and Maschallah Sahebkar Chemie Ingenieur Technik 45 (21) 1244 (1973) https://doi.org/10.1002/cite.330452104
Carbon formation from methane pyrolysis over some transition metal surfaces—II. Manner of carbon and graphite formation
S.D. Robertson Carbon 10 (2) 221 (1972) https://doi.org/10.1016/0008-6223(72)90045-0
Carbon work at the royal aircraft establishment
W. Watt Carbon 10 (2) 121 (1972) https://doi.org/10.1016/0008-6223(72)90036-X
New Forms of Carbon
Otto Vohler, Peter‐Ludwig Reiser, Renato Martina and Dieter Overhoff Angewandte Chemie International Edition in English 9 (6) 414 (1970) https://doi.org/10.1002/anie.197004141
Neuartige Kohlenstoffe
Otto Vohler, Peter‐Ludwig Reiser, Renato Martina and Dieter Overhoff Angewandte Chemie 82 (11) 401 (1970) https://doi.org/10.1002/ange.19700821102
Carbon formation from methane pyrolysis over some transition metal surfaces—I. Nature and properties of the carbons formed
Struan D. Robertson Carbon 8 (3) 365 (1970) https://doi.org/10.1016/0008-6223(70)90076-X
Growth of single-crystal graphite by pyrolysis of acetylene over metals
A.E.B. Presland and P.L. Walker Carbon 7 (1) 1 (1969) https://doi.org/10.1016/0008-6223(69)90002-5
Carbon deposition on iron and nickel sheets from light hydrocarbons
Y. Tamai, Y. Nishiyama and M. Takahashi Carbon 6 (5) 593 (1968) https://doi.org/10.1016/0008-6223(68)90003-1
Theory of carbon formation in vapor-phase pyrolysis—I. Constant concentration of active species
J.L. Hudson and Heicklen Julian Carbon 6 (3) 405 (1968) https://doi.org/10.1016/0008-6223(68)90036-5
Studies on the coating of fuel particles for the ‘dragon’ reactor experiment
J.R.C. Gough and D. Kern Journal of Nuclear Energy 21 (8) 623 (1967) https://doi.org/10.1016/0022-3107(67)90079-2
De Haas-van Alphen effect in pyrolytic and single crystal graphite
S.J Williamson, S Foner and M.S Dresselhaus Carbon 4 (1) 29 (1966) https://doi.org/10.1016/0008-6223(66)90006-6
The heats of combustion of some pyrolytic graphites
D.C. Lewis, Margaret A. Frisch and J.L. Margrave Carbon 2 (4) 431 (1965) https://doi.org/10.1016/0008-6223(65)90014-X
The structure of pyrolytic carbon deposited in a fluidized bed
J.C Bokros Carbon 3 (1) 17 (1965) https://doi.org/10.1016/0008-6223(65)90023-0
de Haas-van Alphen Effect in Pyrolytic and Single-Crystal Graphite
S. J. Williamson, S. Foner and M. S. Dresselhaus Physical Review 140 (4A) A1429 (1965) https://doi.org/10.1103/PhysRev.140.A1429
Proprietes structurales des carbones pyrolytiques deposes entre 1100 et 1800°C
C David, P Sublet, A Auriol and J Rappeneau Carbon 2 (2) 139 (1964) https://doi.org/10.1016/0008-6223(64)90055-7
Thermal Conductivity of Pyrolytic Graphite at Low Temperatures. I. Turbostratic Structures
C. A. Klein and M. G. Holland Physical Review 136 (2A) A575 (1964) https://doi.org/10.1103/PhysRev.136.A575
Cathodic Action of the Uranyl-Itaconate Complex at the Dropping Mercury Electrode.
T.-T. Lai and B. C. Wang Analytical Chemistry 36 (1) 26 (1964) https://doi.org/10.1021/ac60207a013
Comparison of the Pyrolytic Carbon Film Electrode with the Wax-Impregnated Graphite Electrode.
A. L. Beilby, Walter. Brooks and G. L. Lawrence Analytical Chemistry 36 (1) 22 (1964) https://doi.org/10.1021/ac60207a012
Kinetics of deposition of pyrolytic carbon films from methane and carbon suboxide
T.J Hirt and H.B Palmer Carbon 1 (1) 65 (1963) https://doi.org/10.1016/0008-6223(63)90011-3
Determination of the Shock Pressure Required to Initiate Detonation of an Acceptor in the Shock Sensitivity Test
I. JAFFE, R. BEAUREGARD and A. AMSTER ARS Journal 32 (1) 22 (1962) https://doi.org/10.2514/8.5941
Anisotropic Thermal Conductivity of Pyrolytic Graphite
Glen A. Slack Physical Review 127 (3) 694 (1962) https://doi.org/10.1103/PhysRev.127.694
Electrical Properties of Pyrolytic Graphites
Claude A. Klein Reviews of Modern Physics 34 (1) 56 (1962) https://doi.org/10.1103/RevModPhys.34.56
Relations between the Degree of Orientation and the Conditions of the Deposition of Pyrolytic Graphite
Tokichi Noda, Michio Iinagaki and Hajime Kato Bulletin of the Chemical Society of Japan 35 (9) 1471 (1962) https://doi.org/10.1246/bcsj.35.1471