The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Cyrus Levinthal
J. Chim. Phys., 65 (1968) 44-45
Published online: 2017-05-28
This article has been cited by the following article(s):
1063 articles | Pages:
Different folding transition states may result in the same native structure
Ana Rosa Viguera, Luis Serrano and Matthias Wilmanns Nature Structural & Molecular Biology 3 (10) 874 (1996) https://doi.org/10.1038/nsb1096-874
Thermodynamic Cycles as Probes of Structure in Unfolded Proteins,
William A. McGee, Frederico I. Rosell, John R. Liggins, et al. Biochemistry 35 (6) 1995 (1996) https://doi.org/10.1021/bi951228f
Bioinformatics
Erich Bornberg-Bauer Lecture Notes in Computer Science, Bioinformatics 1278 125 (1996) https://doi.org/10.1007/BFb0033211
Refolding of Thermally and Urea-Denatured Ribonuclease A Monitored by Time-Resolved FTIR Spectroscopy
Diane Reinstädler, Heinz Fabian, Jan Backmann and Dieter Naumann Biochemistry 35 (49) 15822 (1996) https://doi.org/10.1021/bi961810j
RNA tectonics: towards RNA design
Eric Westhof, Benoît Masquida and Luc Jaeger Folding and Design 1 (4) R78 (1996) https://doi.org/10.1016/S1359-0278(96)00037-5
LINUS: A hierarchic procedure to predict the fold of a protein
Rajgopal Srinivasan and George D. Rose Proteins: Structure, Function, and Bioinformatics 22 (2) 81 (1995) https://doi.org/10.1002/prot.340220202
Template-Directed Protein Folding into a Metastable State of Increased Activity
Peter Flecker European Journal of Biochemistry 232 (2) 528 (1995) https://doi.org/10.1111/j.1432-1033.1995.528zz.x
Investigation of the folding pathway of the TEM‐1 β‐lactamase
Marc Vanhove, Xavier Raquet and Jean‐Marie Frère Proteins: Structure, Function, and Bioinformatics 22 (2) 110 (1995) https://doi.org/10.1002/prot.340220204
Protein Folding Intermediates: Native-State Hydrogen Exchange
Yawen Bai, Tobin R. Sosnick, Leland Mayne and S. Walter Englander Science 269 (5221) 192 (1995) https://doi.org/10.1126/science.7618079
Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms
Jan T. Pedersen and John Moult Proteins: Structure, Function, and Bioinformatics 23 (3) 454 (1995) https://doi.org/10.1002/prot.340230319
Nonlocal Interactions Stabilize Long Range Loops in the Initial Folding Intermediates of Reduced Bovine Pancreatic Trypsin Inhibitor
Varda Ittah and Elisha Haas Biochemistry 34 (13) 4493 (1995) https://doi.org/10.1021/bi00013a042
Bipartite structure of the α-lactalbumin molten globule
Lawren C. Wu, Zheng-yu Peng and Peter S. Kim Nature Structural & Molecular Biology 2 (4) 281 (1995) https://doi.org/10.1038/nsb0495-281
Catalysis of a protein folding reaction: Mechanistic implications of the 2.0 .ANG. structure of the subtilisin-prodomain complex
Philip Bryan, Lan Wang, Joel Hoskins, Sergei Ruvinov, Susan Strausberg, Patrick Alexander, Orna Almog, Gary Gilliland and Travis Gallagher Biochemistry 34 (32) 10310 (1995) https://doi.org/10.1021/bi00032a026
Finding the right fold
Christopher M. Dobson Nature Structural Biology 2 (7) 513 (1995) https://doi.org/10.1038/nsb0795-513
Principles of protein folding — A perspective from simple exact models
Ken A. Dill, Sarina Bromberg, Kaizhi Yue, Hue Sun Chan, Klaus M. Fiebig, David P. Yee and Paul D. Thomas Protein Science 4 (4) 561 (1995) https://doi.org/10.1002/pro.5560040401
The complexity and accuracy of discrete state models of protein structure
Britt H. Park and Michael Levitt Journal of Molecular Biology 249 (2) 493 (1995) https://doi.org/10.1006/jmbi.1995.0311
Template-Directed Protein Folding into a Metastable State of Increased Activity
Peter Flecker European Journal of Biochemistry 232 (2) 528 (1995) https://doi.org/10.1111/j.1432-1033.1995.tb20840.x
Simulation of protein-folding pathways: lost in (conformational) space?
David A. Hinds and Michael Levitt Trends in Biotechnology 13 (1) 23 (1995) https://doi.org/10.1016/S0167-7799(00)88897-6
Determination of the conformation of folding initiation sites in proteins by computer simulation
Franc Avbelj and John Moult Proteins: Structure, Function, and Bioinformatics 23 (2) 129 (1995) https://doi.org/10.1002/prot.340230203
Transition states and folding dynamics of proteins and heteropolymers
Hue Sun Chan and Ken A. Dill The Journal of Chemical Physics 100 (12) 9238 (1994) https://doi.org/10.1063/1.466677
Statistical Mechanics, Protein Structure, and Protein Substrate Interactions
Robert L. Baldwin NATO ASI Series, Statistical Mechanics, Protein Structure, and Protein Substrate Interactions 325 1 (1994) https://doi.org/10.1007/978-1-4899-1349-4_1
Exploring conformational space with a simple lattice model for protein structure
David A. Hinds and Michael Levitt Journal of Molecular Biology 243 (4) 668 (1994) https://doi.org/10.1016/0022-2836(94)90040-X
NMR Solution Structure of the C-Terminal Fragment 255-316 of Thermolysin: A Dimer Formed by Subunits Having the Native Structure
Manuel Rico, M. Angeles Jimenez, Carlos Gonzalez, Vincenzo De Filippis and Angelo Fontana Biochemistry 33 (49) 14834 (1994) https://doi.org/10.1021/bi00253a023
Implications of the random characteristics of protein sequences for their three-dimensional structure
Alexei V. Finkelstein Current Opinion in Structural Biology 4 (3) 422 (1994) https://doi.org/10.1016/S0959-440X(94)90112-0
Ascribing weights to folding histories: explaining the expediency of biopolymer folding
A Fernandez Journal of Physics A: Mathematical and General 27 (18) 6039 (1994) https://doi.org/10.1088/0305-4470/27/18/014
Protein Folding: Solid evidence for molten globules
Christopher M. Dobson Current Biology 4 (7) 636 (1994) https://doi.org/10.1016/S0960-9822(00)00141-X
Three-State Thermodynamic Analysis of the Denaturation of Staphylococcal Nuclease Mutants
John H. Carra, Elizabeth A. Anderson and Peter L. Privalov Biochemistry 33 (35) 10842 (1994) https://doi.org/10.1021/bi00201a035
Matching speed and stability
Robert L. Baldwin Nature 369 (6477) 183 (1994) https://doi.org/10.1038/369183a0
Phase transitions in heteropolymers with ‘‘secondary structure’’
G. Z. Archontis and E. I. Shakhnovich Physical Review E 49 (4) 3109 (1994) https://doi.org/10.1103/PhysRevE.49.3109
Monte carlo simulations of protein folding. I. Lattice model and interaction scheme
Andrzej Kolinski and Jeffrey Skolnick Proteins: Structure, Function, and Bioinformatics 18 (4) 338 (1994) https://doi.org/10.1002/prot.340180405
Kinetic Characterization of the Chemotactic Protein from Escherichia coli, CheY. Kinetic Analysis of the Inverse Hydrophobic Effect
Victor Munoz, Eva M. Lopez, Markus Jager and Luis Serrano Biochemistry 33 (19) 5858 (1994) https://doi.org/10.1021/bi00185a025
Molten globular characteristics of the native state of apomyoglobin
Laura Lin, Rachel J. Pinker, Kirk Forde, George D. Rose and Neville R. Kallenbach Nature Structural & Molecular Biology 1 (7) 447 (1994) https://doi.org/10.1038/nsb0794-447
Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement
Luke M. Rice and Axel T. BrüNger Proteins: Structure, Function, and Bioinformatics 19 (4) 277 (1994) https://doi.org/10.1002/prot.340190403
Finding intermediates in protein folding
Robert L. Baldwin BioEssays 16 (3) 207 (1994) https://doi.org/10.1002/bies.950160312
Understanding how proteins fold: the lysozyme story so far
Christopher M. Dobson, Philip A. Evans and Sheena E. Radford Trends in Biochemical Sciences 19 (1) 31 (1994) https://doi.org/10.1016/0968-0004(94)90171-6
Solvent‐induced organization: A physical model of folding myoglobin
David J. E. Callaway Proteins: Structure, Function, and Bioinformatics 20 (2) 124 (1994) https://doi.org/10.1002/prot.340200203
Structure–Function Properties of Food Proteins
Structure–Function Properties of Food Proteins 251 (1994) https://doi.org/10.1016/B978-0-12-554360-6.50018-8
Kinetics versus Thermodynamics in Protein Folding
David Baker and David A. Agard Biochemistry 33 (24) 7505 (1994) https://doi.org/10.1021/bi00190a002
Protein folding dynamics: The diffusion‐collision model and experimental data
Martin Karplus and David L. Weaver Protein Science 3 (4) 650 (1994) https://doi.org/10.1002/pro.5560030413
A measure on the space of polymer folding pathways: Preliminaries for a new scheme of statistical inference
Ariel Fernández Journal of Statistical Physics 77 (5-6) 1079 (1994) https://doi.org/10.1007/BF02183153
The Protein Folding Problem and Tertiary Structure Prediction
J. Thomas Ngo, Joe Marks and Martin Karplus The Protein Folding Problem and Tertiary Structure Prediction 433 (1994) https://doi.org/10.1007/978-1-4684-6831-1_14
Structural energetics of the molten globule state
Donald T. Haynie and Ernesto Freire Proteins: Structure, Function, and Bioinformatics 16 (2) 115 (1993) https://doi.org/10.1002/prot.340160202
The Protein Folding Problem
Hue Sun Chan and Ken A. Dill Physics Today 46 (2) 24 (1993) https://doi.org/10.1063/1.881371
Towards protein folding by global energy optimization
Ruben A. Abagyan FEBS Letters 325 (1-2) 17 (1993) https://doi.org/10.1016/0014-5793(93)81406-P
Folding of subtilisin BPN': characterization of a folding intermediate
Jorg Eder, Michael Rheinnecker and Alan R. Fersht Biochemistry 32 (1) 18 (1993) https://doi.org/10.1021/bi00052a004
Fluorescence study of conformational flexibility of RNase S-peptide: Distance-distribution, end-to-end diffusion, and anisotropy decays
B. P. Maliwal, J. R. Lakowicz, G. Kupryszewski and P. Rekowski Biochemistry 32 (46) 12337 (1993) https://doi.org/10.1021/bi00097a009
Rationally designing the accumulation of a folding intermediate of barnase by protein engineering
Jesus M. Sanz and Alan R. Fersht Biochemistry 32 (49) 13584 (1993) https://doi.org/10.1021/bi00212a026
Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase
Joseph V. Mersol, Duncan G. Steel and Ari Gafni Biophysical Chemistry 48 (2) 281 (1993) https://doi.org/10.1016/0301-4622(93)85015-A
Cold denaturation of yeast phosphoglycerate kinase: Kinetics of changes in secondary structure and compactness on unfolding and refolding
Klaus Gast, Gregor Damaschun, Hilde Damaschun, Rolf Misselwitz and Dietrich Zirwer Biochemistry 32 (30) 7747 (1993) https://doi.org/10.1021/bi00081a020
Protein core assembly processes
Klaus M. Fiebig and Ken A. Dill The Journal of Chemical Physics 98 (4) 3475 (1993) https://doi.org/10.1063/1.464068
Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMRspectroscopy
Axel T. Brünger and Michael Nilges Quarterly Reviews of Biophysics 26 (1) 49 (1993) https://doi.org/10.1017/S0033583500003966
Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY
Vladimir V. Filimonov, Jesus Prieto, Jose C. Martinez, Marta Bruix, Pedro L. Mateo and Luis Serrano Biochemistry 32 (47) 12906 (1993) https://doi.org/10.1021/bi00210a045
Protein folding: Structure prediction and statistical mechanics
Masataka Fukugita Nuclear Physics B - Proceedings Supplements 30 159 (1993) https://doi.org/10.1016/0920-5632(93)90185-9
Folding proteins: finding a needle in a haystack
Ken A. Dill Current Opinion in Structural Biology 3 (1) 99 (1993) https://doi.org/10.1016/0959-440X(93)90208-3
1H‐ and 15N‐NMR assignment and solution structure of the chemotactic Escherichia coli Che Y protein
Marta BRUIX, Jaime PASCUAL, Jorge SANTORO, Jesús PRIETO, Luis SERRANO and Manuel RICO European Journal of Biochemistry 215 (3) 573 (1993) https://doi.org/10.1111/j.1432-1033.1993.tb18068.x
Structural argument for N‐terminal initiation of protein folding
Nickolai Alexandrov Protein Science 2 (11) 1989 (1993) https://doi.org/10.1002/pro.5560021121
Structural relationships of homologous proteins as a fundamental principle in homology modeling
Martina Hilbert, Gerald Böhm and Rainer Jaenicke Proteins: Structure, Function, and Bioinformatics 17 (2) 138 (1993) https://doi.org/10.1002/prot.340170204
The dead-end elimination theorem and its use in protein side-chain positioning
Johan Desmet, Marc De Maeyer, Bart Hazes and Ignace Lasters Nature 356 (6369) 539 (1992) https://doi.org/10.1038/356539a0
The folding of an enzyme
Andreas Matouschek, Luis Serrano and Alan R. Fersht Journal of Molecular Biology 224 (3) 819 (1992) https://doi.org/10.1016/0022-2836(92)90564-Z
Folding kinetics of proteins and copolymers
Robert Miller, Craig A. Danko, Michael J. Fasolka, Anna C. Balazs, Hue Sun Chan and Ken A. Dill The Journal of Chemical Physics 96 (1) 768 (1992) https://doi.org/10.1063/1.462462
The folding of an enzyme
Luis Serrano, Andreas Matouschek and Alan R. Fersht Journal of Molecular Biology 224 (3) 847 (1992) https://doi.org/10.1016/0022-2836(92)90566-3
Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy
Melanie J. Cocco, Yung Hsiang Kao, Allen T. Phillips and Juliette T. J. Lecomte Biochemistry 31 (28) 6481 (1992) https://doi.org/10.1021/bi00143a018
The nature of folded states of globular proteins
J. D. Honeycutt and D. Thirumalai Biopolymers 32 (6) 695 (1992) https://doi.org/10.1002/bip.360320610
Up the kinetic pathway
T. E. Creighton Nature 356 (6366) 194 (1992) https://doi.org/10.1038/356194a0
Comparison of the hemocyanin β‐barrel with other greek key β‐barrels: Possible importance of the “β‐zipper” in protein structure and folding
Bart Hazes and Wim G. J. Hol Proteins: Structure, Function, and Bioinformatics 12 (3) 278 (1992) https://doi.org/10.1002/prot.340120306
A search for the most stable folds of protein chains
Alexei V. Finkelstein and Boris A. Reva Nature 351 (6326) 497 (1991) https://doi.org/10.1038/351497a0
The Energy Landscapes and Motions of Proteins
Hans Frauenfelder, Stephen G. Sligar and Peter G. Wolynes Science 254 (5038) 1598 (1991) https://doi.org/10.1126/science.1749933
EJB Reviews 1991
Rainer Jaenicke EJB Reviews 1991 291 (1991) https://doi.org/10.1007/978-3-642-77200-9_22
Stable submolecular folding units in a non-compact form of cytochrome c
Mei-Fen Jeng and S.Walter Englander Journal of Molecular Biology 221 (3) 1045 (1991) https://doi.org/10.1016/0022-2836(91)80191-V
Protein folding bottlenecks: A lattice Monte Carlo simulation
E. Shakhnovich, G. Farztdinov, A. M. Gutin and M. Karplus Physical Review Letters 67 (12) 1665 (1991) https://doi.org/10.1103/PhysRevLett.67.1665
The mechanism of protein folding
C. Robert Matthews Current Opinion in Structural Biology 1 (1) 28 (1991) https://doi.org/10.1016/0959-440X(91)90007-G
Biologically Inspired Physics
Peter G. Wolynes NATO ASI Series, Biologically Inspired Physics 263 15 (1991) https://doi.org/10.1007/978-1-4757-9483-0_2
Protein stability and molecular adaptation to extreme conditons
Rainer JAENICKE European Journal of Biochemistry 202 (3) 715 (1991) https://doi.org/10.1111/j.1432-1033.1991.tb16426.x
Mapping transition states of protein unfolding by protein engineering of ligand-binding sites
Javier Sancho, Elizabeth M. Meiering and Alan R. Fersht Journal of Molecular Biology 221 (3) 1007 (1991) https://doi.org/10.1016/0022-2836(91)80188-Z
An analysis of protein folding pathways
John Moult and Ron Unger Biochemistry 30 (16) 3816 (1991) https://doi.org/10.1021/bi00230a003
How does protein synthesis give rise to the 3D‐structure?
O.B. Ptitsyn FEBS Letters 285 (2) 176 (1991) https://doi.org/10.1016/0014-5793(91)80799-9
Reaction path study of conformational transitions in flexible systems: Applications to peptides
Ryszard Czerminski and Ron Elber The Journal of Chemical Physics 92 (9) 5580 (1990) https://doi.org/10.1063/1.458491
A simple statistical field theory of heteropolymer collapse with application to protein folding
Joseph D. Bryngelson and Peter G. Wolynes Biopolymers 30 (1-2) 177 (1990) https://doi.org/10.1002/bip.360300117
Protein structure prediction
J. Garnier Biochimie 72 (8) 513 (1990) https://doi.org/10.1016/0300-9084(90)90115-W
Protein Engineering
R.L. Somorjai Protein Engineering 1 (1990) https://doi.org/10.1016/B978-0-409-90116-0.50009-1
Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways
Jeffrey Skolnick and Andrzej Kolinski Journal of Molecular Biology 212 (4) 787 (1990) https://doi.org/10.1016/0022-2836(90)90237-G
Simulations of the Folding of a Globular Protein
Jeffrey Skolnick and Andrzej Kolinski Science 250 (4984) 1121 (1990) https://doi.org/10.1126/science.250.4984.1121
Genetic Engineering
Robert F. Kelley and Marjorie E. Winkler Genetic Engineering 1 (1990) https://doi.org/10.1007/978-1-4613-0641-2_1
Protein Engineering
Saran A. Narang Protein Engineering 237 (1990) https://doi.org/10.1016/B978-0-409-90116-0.50019-4
A Chemical Approach to Protein Design—Template‐Assembled Synthetic Proteins (TASP)
Manfred Mutter and Stéphane Vuilleumier Angewandte Chemie International Edition in English 28 (5) 535 (1989) https://doi.org/10.1002/anie.198905353
Computational and site‐specific mutagenesis analyses of the asymmetric charge distribution on calmodulin
P. C. Weber, T. J. Lukas, T. A. Craig, E. Wilson, M. M. King, A. P. Kwiatkowski and D. Martin Watterson Proteins: Structure, Function, and Bioinformatics 6 (1) 70 (1989) https://doi.org/10.1002/prot.340060107
The molten globule state as a clue for understanding the folding and cooperativity of globular‐protein structure
Kunihiro Kuwajima Proteins: Structure, Function, and Bioinformatics 6 (2) 87 (1989) https://doi.org/10.1002/prot.340060202
Toward Protein Tertiary Structure Recognition by Means of Associative Memory Hamiltonians
Mark S. Friedrichs and Peter G. Wolynes Science 246 (4928) 371 (1989) https://doi.org/10.1126/science.246.4928.371
Evidence for an initial fast nucleation process in the folding of human carbonic anhydrase I
NILS BERGENHEM, UNO CARLSSON and JAN‐ÅKE KARLSSON International Journal of Peptide and Protein Research 33 (2) 140 (1989) https://doi.org/10.1111/j.1399-3011.1989.tb00199.x
Formation of unique structure in polypeptide chains
E.I. Shakhnovich and A.M. Gutin Biophysical Chemistry 34 (3) 187 (1989) https://doi.org/10.1016/0301-4622(89)80058-4
Ein chemischer Weg zu neuen Proteinen – Templat‐assoziierte synthetische Proteine (TASP)
Manfred Mutter and Stéphane Vuilleumier Angewandte Chemie 101 (5) 551 (1989) https://doi.org/10.1002/ange.19891010504
Folding of the nascent peptide chain into a biologically active protein
Chenlu Tsou Biochemistry 27 (6) 1809 (1988) https://doi.org/10.1021/bi00406a001
Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding
Peter E. Wright, H. Jane Dyson and Richard A. Lerner Biochemistry 27 (19) 7167 (1988) https://doi.org/10.1021/bi00419a001
The formation of protein secondary structure
Piotr Zielenkiewicz, Danuta Płochocka and Andrzej Rabczenko Biophysical Chemistry 31 (1-2) 139 (1988) https://doi.org/10.1016/0301-4622(88)80018-8
Protein Structure and Protein Engineering
R. Jaenicke Protein Structure and Protein Engineering 16 (1988) https://doi.org/10.1007/978-3-642-74173-9_3
Protein Folding: New Twists
Jacquelyn S. Fetrow, Micheal H. Zehfus and George D. Rose Nature Biotechnology 6 (2) 167 (1988) https://doi.org/10.1038/nbt0288-167
Why do globular proteins fit the limited set of foldin patterns?
Alexey V. Finkelstein and Oleg B. Ptitsyn Progress in Biophysics and Molecular Biology 50 (3) 171 (1987) https://doi.org/10.1016/0079-6107(87)90013-7
Conformations of intermediates in the folding of the pancreatic trypsin inhibitor
David J. States, Thomas E. Creighton, Christopher M. Dobson and Martin Karplus Journal of Molecular Biology 195 (3) 731 (1987) https://doi.org/10.1016/0022-2836(87)90192-6
Protein folding for pleasure and for profit
Roger Pain Trends in Biochemical Sciences 12 309 (1987) https://doi.org/10.1016/0968-0004(87)90148-4
An algorithm for determining the conformation of polypeptide segments in proteins by systematic search
J. Moult and M. N. G. James Proteins: Structure, Function, and Bioinformatics 1 (2) 146 (1986) https://doi.org/10.1002/prot.340010207
Pages:
901 to 1000 of 1063 articles