The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Cyrus Levinthal
J. Chim. Phys., 65 (1968) 44-45
Published online: 2017-05-28
This article has been cited by the following article(s):
1063 articles | Pages:
Folding of αrβ and ϵβ Reverse Turns; A Nanosecond Molecular Dynamics Simulation of the Hexapeptide MSALNT and the Octapeptide NMSALNTL in Water
Harri Santa, Mikael Peräkylä and Reino Laatikainen Journal of Biomolecular Structure and Dynamics 16 (5) 1033 (1999) https://doi.org/10.1080/07391102.1999.10508312
Folding Pathway of FKBP12 and Characterisation of the Transition State
Ewan R.G. Main, Kate F. Fulton and Sophie E. Jackson Journal of Molecular Biology 291 (2) 429 (1999) https://doi.org/10.1006/jmbi.1999.2941
Study of protein fluctuation with an effective inter-C? atomic potential derived from average distances between amino acids in proteins
Takeshi Kikuchi Journal of Computational Chemistry 20 (7) 713 (1999) https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<713::AID-JCC6>3.0.CO;2-S
The fundamentals of protein folding: bringing together theory and experiment
Christopher M Dobson and Martin Karplus Current Opinion in Structural Biology 9 (1) 92 (1999) https://doi.org/10.1016/S0959-440X(99)80012-8
Dissection of the de Novo Designed Peptide αtα: Stability and Properties of the Intact Molecule and Its Constituent Helices
Youcef Fezoui, Emory H. Braswell, Wujing Xian and John J. Osterhout Biochemistry 38 (9) 2796 (1999) https://doi.org/10.1021/bi9823838
EXACTLY SOLVABLE MODEL OF PROTEIN FOLDING: RUBIK'S MAGIC SNAKE MODEL
KAZUMOTO IGUCHI International Journal of Modern Physics B 13 (04) 325 (1999) https://doi.org/10.1142/S0217979299000205
Exploring the Folding Funnel of a Polypeptide Chain by Biophysical Studies on Protein Fragments
José L. Neira and Alan R. Fersht Journal of Molecular Biology 285 (3) 1309 (1999) https://doi.org/10.1006/jmbi.1998.2249
The topomer-sampling model of protein folding
Derek A. Debe, Matt J. Carlson and William A. Goddard Proceedings of the National Academy of Sciences 96 (6) 2596 (1999) https://doi.org/10.1073/pnas.96.6.2596
Distinguishing between sequential and nonsequentially folded proteins: Implications for folding and misfolding
Chung‐Jung Tsai, Jacob V Maizel and Ruth Nussinov Protein Science 8 (8) 1591 (1999) https://doi.org/10.1110/ps.8.8.1591
Rapid Folding of Calcium-Free Subtilisin by a Stabilized Pro-Domain Mutant
Biao Ruan, Joel Hoskins and Philip N. Bryan Biochemistry 38 (26) 8562 (1999) https://doi.org/10.1021/bi990362n
Structural Phase Transition of Di-Block Polyampholyte
H. Shimizu, K. Uehara, K. Yamamoto and Y. Hiwatari Molecular Simulation 22 (4-5) 285 (1999) https://doi.org/10.1080/08927029908022102
Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis 1 1Edited by A. R. Fersht
Yaoqi Zhou and Martin Karplus Journal of Molecular Biology 293 (4) 917 (1999) https://doi.org/10.1006/jmbi.1999.2936
Pauling's Legacy - Modem Modelling of the Chemical Bond
Dale F. Mierke Theoretical and Computational Chemistry, Pauling's Legacy - Modem Modelling of the Chemical Bond 6 637 (1999) https://doi.org/10.1016/S1380-7323(99)80027-2
Polymer principles and protein folding
Ken A. Dill Protein Science 8 (6) 1166 (1999) https://doi.org/10.1110/ps.8.6.1166
Protein folding: from the levinthal paradox to structure prediction
Barry Honig Journal of Molecular Biology 293 (2) 283 (1999) https://doi.org/10.1006/jmbi.1999.3006
Proteins in Vacuo: Relaxation of Unfolded Lysozyme Leads to Folding into Native and Non-Native Structures. A Molecular Dynamics Study
I. Velázquez, C. T. Reimann, and and O. Tapia Journal of the American Chemical Society 121 (49) 11468 (1999) https://doi.org/10.1021/ja990911c
Energy landscape of a model protein
Mark A. Miller and David J. Wales The Journal of Chemical Physics 111 (14) 6610 (1999) https://doi.org/10.1063/1.480011
Statistical Mechanics of Biocomplexity
Wolfgang Wenzel and Kay Hamacher Lecture Notes in Physics, Statistical Mechanics of Biocomplexity 527 62 (1999) https://doi.org/10.1007/BFb0105008
PHYSICAL FOUNDATION OF PROTEIN ARCHITECTURE
NOBUHIKO SAITÔ and YUKIO KOBAYASHI International Journal of Modern Physics B 13 (19) 2431 (1999) https://doi.org/10.1142/S0217979299002502
Rational design of a scytalone dehydratase-like enzyme using a structurally homologous protein scaffold
Andrew E. Nixon, Steven M. Firestine, Frank G. Salinas and Stephen J. Benkovic Proceedings of the National Academy of Sciences 96 (7) 3568 (1999) https://doi.org/10.1073/pnas.96.7.3568
Jeffrey Skolnick and Andrzej Kolinski 105 203 (1999) https://doi.org/10.1002/9780470141649.ch7
Tertiäre Motive bei Struktur und Faltung von RNA
Robert T. Batey, Robert P. Rambo and Jennifer A. Doudna Angewandte Chemie 111 (16) 2472 (1999) https://doi.org/10.1002/(SICI)1521-3757(19990816)111:16<2472::AID-ANGE2472>3.0.CO;2-M
Protein Volume 2
Franz X. Schmid Protein, Protein Volume 2 2 153 (1999) https://doi.org/10.1016/S1874-5989(99)80007-6
Protein folding in the ER
Fred J. Stevens and Yair Argon Seminars in Cell & Developmental Biology 10 (5) 443 (1999) https://doi.org/10.1006/scdb.1999.0315
Stability and folding of domain proteins
Rainer Jaenicke Progress in Biophysics and Molecular Biology 71 (2) 155 (1999) https://doi.org/10.1016/S0079-6107(98)00032-7
Automata, Languages and Programming
Peter Clote Lecture Notes in Computer Science, Automata, Languages and Programming 1644 240 (1999) https://doi.org/10.1007/3-540-48523-6_21
Fragment Reconstitution of a Small Protein: Folding Energetics of the Reconstituted Immunoglobulin Binding Domain B1 of Streptococcal Protein G
Shinya Honda, Naohiro Kobayashi, Eisuke Munekata and Hatsuho Uedaira Biochemistry 38 (4) 1203 (1999) https://doi.org/10.1021/bi982271g
Conformational Unfolding Studies of Three-Disulfide Mutants of Bovine Pancreatic Ribonuclease A and the Coupling of Proline Isomerization to Disulfide Redox Reactions
Michio Iwaoka, William J. Wedemeyer and Harold A. Scheraga Biochemistry 38 (9) 2805 (1999) https://doi.org/10.1021/bi982593k
Unfolding and Refolding of Cardiotoxin III Elucidated by Reversible Conversion of the Native and Scrambled Species
Jui-Yoa Chang, Thallampuranam Krishnaswamy S. Kumar and Chin Yu Biochemistry 37 (19) 6745 (1998) https://doi.org/10.1021/bi9714565
A free energy analysis by unfolding applied to 125-mers on a cubic lattice
Myung S Chung, Andrew F Neuwald and W John Wilbur Folding and Design 3 (1) 51 (1998) https://doi.org/10.1016/S1359-0278(98)00008-X
On “Levinthal paradox” and the theory of protein folding
Jean Durup Journal of Molecular Structure: THEOCHEM 424 (1-2) 157 (1998) https://doi.org/10.1016/S0166-1280(97)00238-8
Robert L. Jernigan and Ivet Bahar (1998) https://doi.org/10.1002/0470845015.cca022m
Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold: Influence of chain knotting on the rate of folding
Alexei V Finkelstein and Azat Ya Badretdinov Folding and Design 3 (1) 67 (1998) https://doi.org/10.1016/S1359-0278(98)00009-1
Frank Eisenhaber and Peer Bork 43 (1998) https://doi.org/10.1002/9783527620869.ch2
Folding mechanism of three structurally similar β-sheet proteins
Lora L. Burns, Paula M. Dalessio and Ira J. Ropson Proteins: Structure, Function, and Genetics 33 (1) 107 (1998) https://doi.org/10.1002/(SICI)1097-0134(19981001)33:1<107::AID-PROT10>3.0.CO;2-P
Protein folding mechanisms and the multidimensional folding funnel
Nicholas D. Socci, José Nelson Onuchic and Peter G. Wolynes Proteins: Structure, Function, and Genetics 32 (2) 136 (1998) https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2<136::AID-PROT2>3.0.CO;2-J
Accuracy of side-chain prediction upon near-native protein backbones generated by ab initio folding methods
Enoch S. Huang, Patrice Koehl, Michael Levitt, Rohit V. Pappu and Jay W. Ponder Proteins: Structure, Function, and Genetics 33 (2) 204 (1998) https://doi.org/10.1002/(SICI)1097-0134(19981101)33:2<204::AID-PROT5>3.0.CO;2-I
Ab initio method for predicting tertiary structures of globular proteins
Yukio Kobayashi, Hiroyuki Sasabe and Nobuhiko Saitô Fluid Phase Equilibria 144 (1-2) 403 (1998) https://doi.org/10.1016/S0378-3812(97)00285-9
Protein folding in the landscape perspective: Chevron plots and non-arrhenius kinetics
Hue Sun Chan and Ken A. Dill Proteins: Structure, Function, and Genetics 30 (1) 2 (1998) https://doi.org/10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO;2-R
The sequences of small proteins are not extensively optimized for rapid folding by natural selection
David E. Kim, Hongdi Gu and David Baker Proceedings of the National Academy of Sciences 95 (9) 4982 (1998) https://doi.org/10.1073/pnas.95.9.4982
Proteinfaltung aus theoretischer und experimenteller Sicht
Christopher M. Dobson, Andrej Šali and Martin Karplus Angewandte Chemie 110 (7) 908 (1998) https://doi.org/10.1002/(SICI)1521-3757(19980403)110:7<908::AID-ANGE908>3.0.CO;2-0
The Detection of Unfolding Intermediates of Soybean Lipoxygenase-1 during Urea Denaturation by Fluorescence Spectroscopy
Ying Wu and Zhi-Xin Wang Spectroscopy Letters 31 (5) 955 (1998) https://doi.org/10.1080/00387019808003274
Engineering the Independent Folding of the Subtilisin BPN‘ Pro-Domain: Correlation of Pro-Domain Stability with the Rate of Subtilisin Folding
Lan Wang, Biao Ruan, Sergei Ruvinov and Philip N. Bryan Biochemistry 37 (9) 3165 (1998) https://doi.org/10.1021/bi972741r
Prediction of the three-dimensional structure of proteins using the electrostatic screening model and hierarchic condensation
Franc Avbelj and Ljudmila Fele Proteins: Structure, Function, and Genetics 31 (1) 74 (1998) https://doi.org/10.1002/(SICI)1097-0134(19980401)31:1<74::AID-PROT7>3.0.CO;2-H
A Toy Model for Understanding the Conceptual Framework of Protein Folding: Rubik's Magic Snake Model
Kazumoto Iguchi Modern Physics Letters B 12 (13) 499 (1998) https://doi.org/10.1142/S0217984998000603
Keith E. Laidig and Valerie Daggett (1998) https://doi.org/10.1002/0470845015.cpa032
A hierarchical scheme for cooperativity and folding in proteins
Alex Hansen, Mogens H. Jensen, Kim Sneppen and Giovanni Zocchi Physica A: Statistical Mechanics and its Applications 250 (1-4) 355 (1998) https://doi.org/10.1016/S0378-4371(97)00567-0
Sequential domain refolding of pig muscle 3-phosphoglycerate kinase: kinetic analysis of reactivation
Andrea N. Szilégyi and Méria Vas Folding and Design 3 (6) 565 (1998) https://doi.org/10.1016/S1359-0278(98)00071-6
Kinetic Evidence for an Obligatory Intermediate in the Folding of the Membrane Protein Bacteriorhodopsin
Amjad Farooq Biochemistry 37 (43) 15170 (1998) https://doi.org/10.1021/bi981485v
How do small single-domain proteins fold?
Sophie E. Jackson Folding and Design 3 (4) R81 (1998) https://doi.org/10.1016/S1359-0278(98)00033-9
On the thermodynamic hypothesis of protein folding
Sridhar Govindarajan and Richard A. Goldstein Proceedings of the National Academy of Sciences 95 (10) 5545 (1998) https://doi.org/10.1073/pnas.95.10.5545
An instrument for time resolved monitoring of fast chemical transitions: Application to the kinetics of refolding of a globular protein
Vladimir Ratner and Elisha Haas Review of Scientific Instruments 69 (5) 2147 (1998) https://doi.org/10.1063/1.1148914
Computational Methods in Molecular Biology
David Jones New Comprehensive Biochemistry, Computational Methods in Molecular Biology 32 285 (1998) https://doi.org/10.1016/S0167-7306(08)60470-6
Comparison of conformational changes and inactivation of soybean lipoxygenase-1 during urea denaturation
Ying Wu and Zhi-Xin Wang Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1388 (2) 325 (1998) https://doi.org/10.1016/S0167-4838(98)00182-4
Cytochrome c folding traps are not due solely to histidine-heme ligation: direct demonstration of a role for N-terminal amino group-heme ligation 1 1Edited by P. E. Wright
Barbara Hammack, Shubhada Godbole and Bruce E Bowler Journal of Molecular Biology 275 (5) 719 (1998) https://doi.org/10.1006/jmbi.1997.1493
The early folding kinetics of apomyoglobin
Rohit V. Pappu and David L. Weaver Protein Science 7 (2) 480 (1998) https://doi.org/10.1002/pro.5560070229
Chemical Processes in Solution Studied by an Integral Equation Theory of Molecular Liquids
Fumio Hirata Bulletin of the Chemical Society of Japan 71 (7) 1483 (1998) https://doi.org/10.1246/bcsj.71.1483
Discrete molecular dynamics studies of the folding of a protein-like model
Nikolay V. Dokholyan, Sergey V. Buldyrev, H Eugene Stanley and Eugene I. Shakhnovich Folding and Design 3 (6) 577 (1998) https://doi.org/10.1016/S1359-0278(98)00072-8
Effect of interaction energy fluctuation on the folding of a proteinlike model
Zhongwen Xing, Jun Wang and Wei Wang Physical Review E 58 (3) 3552 (1998) https://doi.org/10.1103/PhysRevE.58.3552
First-Principle Determination of Peptide Conformations in Solvents: Combination of Monte Carlo Simulated Annealing and RISM Theory
Masahiro Kinoshita, Yuko Okamoto and Fumio Hirata Journal of the American Chemical Society 120 (8) 1855 (1998) https://doi.org/10.1021/ja972048r
Alternative Explanations for “Multistate” Kinetics in Protein Folding: Transient Aggregation and Changing Transition-State Ensembles
Mikael Oliveberg Accounts of Chemical Research 31 (11) 765 (1998) https://doi.org/10.1021/ar970089m
Folding intermediates in cytochrome c
Syun-Ru Yeh and Denis L. Rousseau Nature Structural Biology 5 (3) 222 (1998) https://doi.org/10.1038/nsb0398-222
Protein Folding
Jay R. Winkler and Harry B. Gray Accounts of Chemical Research 31 (11) 698 (1998) https://doi.org/10.1021/ar980086p
pH Dependence of the Folding of Intestinal Fatty Acid Binding Protein
Paula M. Dalessio and Ira J. Ropson Archives of Biochemistry and Biophysics 359 (2) 199 (1998) https://doi.org/10.1006/abbi.1998.0908
The application of circular dichroism to studies of protein folding and unfolding
Sharon M Kelly and Nicholas C Price Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1338 (2) 161 (1997) https://doi.org/10.1016/S0167-4838(96)00190-2
Evolution of the folding ability of proteins through functional selection
Seiji Saito, Masaki Sasai and Tetsuya Yomo Proceedings of the National Academy of Sciences 94 (21) 11324 (1997) https://doi.org/10.1073/pnas.94.21.11324
Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude
Mary Munson, Karen S. Anderson and Lynne Regan Folding and Design 2 (1) 77 (1997) https://doi.org/10.1016/S1359-0278(97)00008-4
Relaxational Dynamics of a Random Heteropolymer
Christine Villeneuve, Hong Guo and Martin J. Zuckermann Macromolecules 30 (10) 3066 (1997) https://doi.org/10.1021/ma961162b
"New View" of Protein Folding Reconciled with the Old Through Multiple Unfolding Simulations
Themis Lazaridis and Martin Karplus Science 278 (5345) 1928 (1997) https://doi.org/10.1126/science.278.5345.1928
Consistency in structural energetics of protein folding and peptide recognition
Chao Zhang, James L. Cornette and Charles Delisi Protein Science 6 (5) 1057 (1997) https://doi.org/10.1002/pro.5560060512
Characteristic temperatures of folding of a small peptide
Ulrich H. E. Hansmann, Masato Masuya and Yuko Okamoto Proceedings of the National Academy of Sciences 94 (20) 10652 (1997) https://doi.org/10.1073/pnas.94.20.10652
Cystic Fibrosis: A Disease of Altered Protein Folding
Bao-He Qu, Elizabeth Strickland and Philip J. Thomas Journal of Bioenergetics and Biomembranes 29 (5) 483 (1997) https://doi.org/10.1023/A:1022439108101
Fluorescence Spectral Changes During the Folding of Intestinal Fatty Acid Binding Protein
Ira J. Ropson and Paula M. Dalessio Biochemistry 36 (28) 8594 (1997) https://doi.org/10.1021/bi962983b
Protein structure: what is it possible to predict now?
Alexei V Finkelstein Current Opinion in Structural Biology 7 (1) 60 (1997) https://doi.org/10.1016/S0959-440X(97)80008-5
Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold
Alexei V Finkelstein and Azat Ya Badretdinov Folding and Design 2 (2) 115 (1997) https://doi.org/10.1016/S1359-0278(97)00016-3
Refolding of Myoglobins of Nonhomologous Sequences by the Island Model
Yukio Kobayashi and Nobuhiko Saitô Journal of Protein Chemistry 16 (2) 83 (1997) https://doi.org/10.1023/A:1026385816247
Geometrical effects on folding of macromolecules
A. Caliri and M. A. A. da Silva The Journal of Chemical Physics 106 (18) 7856 (1997) https://doi.org/10.1063/1.473744
The Levinthal paradox: yesterday and today
Martin Karplus Folding and Design 2 S69 (1997) https://doi.org/10.1016/S1359-0278(97)00067-9
Innovation, Arbeit und Umwelt — Leitbilder künftiger industrieller Produktion. Strukturbildung und Stabilität von Eiweißmolekülen
Rainer Jaenicke Innovation, Arbeit und Umwelt — Leitbilder künftiger industrieller Produktion. Strukturbildung und Stabilität von Eiweißmolekülen 41 (1997) https://doi.org/10.1007/978-3-322-85750-7_3
Symmetry and Kinetic Optimization of Proteinlike Heteropolymers
Erik D. Nelson, Lynn F. Teneyck and José N. Onuchic Physical Review Letters 79 (18) 3534 (1997) https://doi.org/10.1103/PhysRevLett.79.3534
Three-state kinetic analysis of Chinese hamster dihydrofolate reductase unfolding by guanidine hydrochloride
Jia-Wei Wu, Zhi-Xin Wang and Jun-Mei Zhou Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1343 (1) 107 (1997) https://doi.org/10.1016/S0167-4838(97)00089-7
Detection of residue contacts in a protein folding intermediate
Jochen Balbach, Vincent Forge, Wai Shun Lau, et al. Proceedings of the National Academy of Sciences 94 (14) 7182 (1997) https://doi.org/10.1073/pnas.94.14.7182
From Levinthal to pathways to funnels
Ken A. Dill and Hue Sun Chan Nature Structural & Molecular Biology 4 (1) 10 (1997) https://doi.org/10.1038/nsb0197-10
Functional rapidly folding proteins from simplified amino acid sequences
David S. Riddle, Jed V. Santiago, Susan T. Bray-Hall, et al. Nature Structural Biology 4 (10) 805 (1997) https://doi.org/10.1038/nsb1097-805
Progress in Nucleic Acid Research and Molecular Biology
Peter Bross, Brage S. Andresen and Niels Gregersen Progress in Nucleic Acid Research and Molecular Biology 58 301 (1997) https://doi.org/10.1016/S0079-6603(08)60040-9
A heteropolymer model study for the mechanism of protein folding
Masataka Fukugita, David Lancaster and Mark G. Mitchard Biopolymers 41 (3) 239 (1997) https://doi.org/10.1002/(SICI)1097-0282(199703)41:3<239::AID-BIP1>3.0.CO;2-T
Magnesium-aided folding of group I ribozymes with a minimal loss of entropy
Ariel Fernández and Gustavo Appignanesi Biophysical Chemistry 61 (1) 51 (1996) https://doi.org/10.1016/0301-4622(96)02190-4
Current Topics in Cellular Regulation Volume 34
Rainer Jaenicke Current Topics in Cellular Regulation, Current Topics in Cellular Regulation Volume 34 34 209 (1996) https://doi.org/10.1016/S0070-2137(96)80008-2
A Monte Carlo simulation study on the collapse transition of model polymers: Possible solvent effect and relevance to protein folding
Srikanta Sen The Journal of Chemical Physics 104 (13) 5304 (1996) https://doi.org/10.1063/1.471259
Protein folding for realists: A timeless phenomenon
David Shortle, Yi Wang, Joel R. Gillespie and James O. Wrabl Protein Science 5 (6) 991 (1996) https://doi.org/10.1002/pro.5560050602
Contact interactions method: A new algorithm for protein folding simulations
Lucio Toma and Salvatore Toma Protein Science 5 (1) 147 (1996) https://doi.org/10.1002/pro.5560050118
How do proteins acquire their three-dimensional structure and stability?
Rainer Jaenicke Naturwissenschaften 83 (12) 544 (1996) https://doi.org/10.1007/BF01141979
Circular Dichroism and the Conformational Analysis of Biomolecules
Robert W. Woody and A. Keith Dunker Circular Dichroism and the Conformational Analysis of Biomolecules 109 (1996) https://doi.org/10.1007/978-1-4757-2508-7_4
Dynamics of polyglutamic acids in α-helical and coil states. Comparison with dynamics of some globular proteins. Rayleigh scattering of Mössbauer radiation (RSMR) data
Yu. F. Krupyanskii, I. V. Kurinov, S. A. Kuznetsov, G. V. Eshenko and F. Parak Il Nuovo Cimento D 18 (2-3) 365 (1996) https://doi.org/10.1007/BF02458919
Molecular collapse: The rate-limiting step in two-state cytochrome c folding
Tobin R. Sosnick, Leland Mayne and S. Water Englander Proteins: Structure, Function, and Genetics 24 (4) 413 (1996) https://doi.org/10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F
The problem of protein folding and dynamics: time-resolved dynamic nonradiative excitation energy transfer measurements
E. Haas IEEE Journal of Selected Topics in Quantum Electronics 2 (4) 1088 (1996) https://doi.org/10.1109/2944.577340
Protein Folding Dynamics: Application of the Diffusion-Collision Model to the Folding of a Four-Helix Bundle
Kanthi K. Yapa and David L. Weaver The Journal of Physical Chemistry 100 (7) 2498 (1996) https://doi.org/10.1021/jp952543e
Changing the Transition State for Protein (Un)folding
Donald F. Doyle, Jennifer C. Waldner, Sudip Parikh, Luis Alcazar-Roman and Gary J. Pielak Biochemistry 35 (23) 7403 (1996) https://doi.org/10.1021/bi960409u
Progress in Nucleic Acid Research and Molecular Biology
N.A. Kolchanov, I.I. Titov, I.E. Vlassova and V.V. Vlassov Progress in Nucleic Acid Research and Molecular Biology 53 131 (1996) https://doi.org/10.1016/S0079-6603(08)60144-0
Universality and diversity of the protein folding scenarios:a comprehensive analysis with the aid of a lattice model
Leonid A Mirny, Victor Abkevich and Eugene I Shakhnovich Folding and Design 1 (2) 103 (1996) https://doi.org/10.1016/S1359-0278(96)00019-3
Pages:
801 to 900 of 1063 articles