The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
André Thomy , Xavier Duval
J. Chim. Phys., 67 (1970) 286-290
Published online: 2017-05-28
This article has been cited by the following article(s):
138 articles | Pages:
Propriétés thermodynamiques du film de tétrafluorométhane adsorbé sur graphite
P. Dolle, M. Matecki and A. Thomy Surface Science 91 (1) 271 (1980) https://doi.org/10.1016/0039-6028(80)90085-0
Commensurate-incommensurate transition of krypton monolayers on graphite: A low temperature theory
Jacques Villain Surface Science 97 (1) 219 (1980) https://doi.org/10.1016/0039-6028(80)90115-6
Two-dimensional melting and polymorphism in adsorbed phases
M. Bienfait Surface Science 89 (1-3) 13 (1979) https://doi.org/10.1016/0039-6028(79)90588-0
The critical exponent β associated with the two-dimensional condensation in the second adlayer of argon on the cleavage face of cadmium chloride
Yves Larher Molecular Physics 38 (3) 789 (1979) https://doi.org/10.1080/00268977900102051
Multicritical Phase Diagram of Gases Adsorbed on Graphite: Temperature Variation and Finite-Size Effects
S. Ostlund and A. N. Berker Physical Review Letters 42 (13) 843 (1979) https://doi.org/10.1103/PhysRevLett.42.843
Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering
A N Berker and S Ostlund Journal of Physics C: Solid State Physics 12 (22) 4961 (1979) https://doi.org/10.1088/0022-3719/12/22/035
Van der Waals model of adsorption
D. E. Sullivan Physical Review B 20 (10) 3991 (1979) https://doi.org/10.1103/PhysRevB.20.3991
Condensation and compression of argon monolayers on graphite
Christopher G. Shaw and Samuel C. Fain Surface Science 83 (1) 1 (1979) https://doi.org/10.1016/0039-6028(79)90476-X
Heat capacity of Ar monolayer adsorbed on basal plane graphite
Thomas T. Chung Surface Science 87 (2) 348 (1979) https://doi.org/10.1016/0039-6028(79)90534-X
Lattice-gas model of multiple layer adsorption
M.J De Oliveira and Robert B Griffiths Surface Science 71 (3) 687 (1978) https://doi.org/10.1016/0039-6028(78)90455-7
Misfit dislocations and lattice parameters of adsorbed xenon and krypton monolayers on graphite
J.A Venables and P.S Schabes-Retchkiman Surface Science 71 (1) 27 (1978) https://doi.org/10.1016/0039-6028(78)90311-4
Classification of continuous order-disorder transitions in adsorbed monolayers
Eytan Domany, M. Schick, J. S. Walker and R. B. Griffiths Physical Review B 18 (5) 2209 (1978) https://doi.org/10.1103/PhysRevB.18.2209
Renormalization-group treatment of a Potts lattice gas for krypton adsorbed onto graphite
A. N. Berker, S. Ostlund and F. A. Putnam Physical Review B 17 (9) 3650 (1978) https://doi.org/10.1103/PhysRevB.17.3650
Helium films from two to three dimensions
J.G. Dash Physics Reports 38 (4) 177 (1978) https://doi.org/10.1016/0370-1573(78)90143-6
Melting of Submonolayer Krypton Films on Graphite
P. M. Horn, R. J. Birgeneau, P. Heiney and E. M. Hammonds Physical Review Letters 41 (14) 961 (1978) https://doi.org/10.1103/PhysRevLett.41.961
Quantum Liquids
J.G. Dash Quantum Liquids 63 (1978) https://doi.org/10.1016/B978-0-444-85117-8.50007-6
Clustering and percolation transitions in helium and other thin films
J. G. Dash Physical Review B 15 (6) 3136 (1977) https://doi.org/10.1103/PhysRevB.15.3136
Polarization energy in the atom-surface interaction from optical data
L.W. Bruch and H. Watanabe Surface Science 65 (2) 619 (1977) https://doi.org/10.1016/0039-6028(77)90470-8
N2 Monolayers on graphite: Specific heat and vapor pressure measurements — thermodynamics of size effects and steric factors
T.T. Chung and J.G. Dash Surface Science 66 (2) 559 (1977) https://doi.org/10.1016/0039-6028(77)90038-3
Adsorption of krypton on the basal plane of graphite: LEED and Auger measurements
H.M Kramer and J Suzanne Surface Science 54 (3) 659 (1976) https://doi.org/10.1016/0039-6028(76)90212-0
Epitaxial growth of rare gas solids
H.M. Kramer Journal of Crystal Growth 33 (1) 65 (1976) https://doi.org/10.1016/0022-0248(76)90081-6
Theory of monolayer physical adsorption. I. Flat surface
William A. Steele The Journal of Chemical Physics 65 (12) 5256 (1976) https://doi.org/10.1063/1.433025
Application d'un modéle de l'état liquide à une monocouche de xénon ou de krypton adsorbées sur la surface (0001) du graphite
C Bernard, J Suzanne, M Bienfait and P Hicter Surface Science 52 (2) 340 (1975) https://doi.org/10.1016/0039-6028(75)90064-3
Debye-Waller factor of molecules adsorbed on graphite
S. Bukshpan, T. Sonnino and J.G. Dash Surface Science 52 (3) 466 (1975) https://doi.org/10.1016/0039-6028(75)90081-3
Layer growth of xenon on graphite
G.L. Price and J.A. Venables Surface Science 49 (1) 264 (1975) https://doi.org/10.1016/0039-6028(75)90342-8
Entropie d'adsorption du xénon en épitaxie sur la face (0001) du graphite
J. Suzanne, P. Masri and M. Bienfait Surface Science 43 (2) 441 (1974) https://doi.org/10.1016/0039-6028(74)90268-4
Thermodynamic study of theHe4monolayer adsorbed on Grafoil
Robert L. Elgin and David L. Goodstein Physical Review A 9 (6) 2657 (1974) https://doi.org/10.1103/PhysRevA.9.2657
Low Temperature Physics-LT 13
G. B. Huff and J. G. Dash Low Temperature Physics-LT 13 165 (1974) https://doi.org/10.1007/978-1-4613-4520-6_27
Low Temperature Physics-LT 13
J. G. Dash Low Temperature Physics-LT 13 19 (1974) https://doi.org/10.1007/978-1-4684-7864-8_3
Neutron Scattering from Nitrogen Adsorbed on Basal-Plane-Oriented Graphite
J. K. Kjems, L. Passell, H. Taub and J. G. Dash Physical Review Letters 32 (13) 724 (1974) https://doi.org/10.1103/PhysRevLett.32.724
Potential energies of adsorbed rare gases on graphite
G.L. Price Surface Science 46 (2) 697 (1974) https://doi.org/10.1016/0039-6028(74)90337-9
Phases ofHe3andHe4Monolayer Films Adsorbed on Basal-Plane Oriented Graphite
M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean and O. E. Vilches Physical Review A 8 (3) 1589 (1973) https://doi.org/10.1103/PhysRevA.8.1589
The interaction of krypton and an exfoliated graphite at 77.4 K
Victor R Deitz and Elliott Berlin Journal of Colloid and Interface Science 44 (1) 57 (1973) https://doi.org/10.1016/0021-9797(73)90191-4
Krypton adsorption on modified carbon fibers
N.H. Turner and Victor R. Deitz Carbon 11 (3) 256 (1973) https://doi.org/10.1016/0008-6223(73)90031-6
Auger electron spectroscopy and leed studies of adsorption isotherms: Xenon on (0001) graphite
J. Suzanne, J.P. Coulomb and M. Bienfait Surface Science 40 (2) 414 (1973) https://doi.org/10.1016/0039-6028(73)90080-0
Les différentes étapes de la formation d'un film adsorbé de gaz rare ou de méthane sur une surface uniforme de graphite
A Thomy, J Regnier, J Menaucourt and X Duval Journal of Crystal Growth 13-14 159 (1972) https://doi.org/10.1016/0022-0248(72)90147-9
Mass Transport ofHe4Films Adsorbed on Graphite
J. A. Herb and J. G. Dash Physical Review Letters 29 (13) 846 (1972) https://doi.org/10.1103/PhysRevLett.29.846
Étude par diffraction d'électrons lents de l'adsorption du xénon sur un monocristal du graphite
J Suzanne, G Albinet and M Bienfait Journal of Crystal Growth 13-14 164 (1972) https://doi.org/10.1016/0022-0248(72)90148-0
Pages:
101 to 138 of 138 articles