The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Maryvonne Brigodiot , Jeanne Marie Lebas
J. Chim. Phys., 69 (1972) 964-971
Published online: 2017-05-28
This article has been cited by the following article(s):
30 articles
Surface-Enhanced Raman Scattering on Silver Nanostructured Films Prepared by Spray-Deposition
Roberta Brayner, Ruth Iglesias, Stéphanie Truong, et al. Langmuir 26 (22) 17465 (2010) https://doi.org/10.1021/la102722v
Density functional theory study of vibrational spectra of acridine and phenazine
Aiping Fu, Dongmei Du and Zhengyu Zhou Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59 (2) 245 (2003) https://doi.org/10.1016/S1386-1425(02)00169-5
Study of the adsorption and electrochemical reduction of lucigenin on Ag electrodes by surface-enhanced Raman spectroscopy
Juan I Millán, José V Garcı́a-Ramos and Santiago Sanchez-Cortes Journal of Electroanalytical Chemistry 556 83 (2003) https://doi.org/10.1016/S0022-0728(03)00332-2
Adsorption of lucigenin on Ag nanoparticles studied by surface‐enhanced Raman spectroscopy: effect of different anions on the intensification of Raman spectra
Juan I. Millán, José V. Garcia‐Ramos, Santiago Sanchez‐Cortes and Rafael Rodríguez‐Amaro Journal of Raman Spectroscopy 34 (3) 227 (2003) https://doi.org/10.1002/jrs.981
Ab initio/density functional study of vibrational frequencies of acridine in the ground and excited states
T Kamisuki and C Hirose Journal of Molecular Structure: THEOCHEM 542 (1-3) 189 (2001) https://doi.org/10.1016/S0166-1280(00)00836-8
Force fields and assignments of the vibrational spectra of acridine and phenazine—an ab initio study
I. Bandyopadhyay and S. Manogaran Journal of Molecular Structure: THEOCHEM 507 (1-3) 217 (2000) https://doi.org/10.1016/S0166-1280(99)00405-4
Laser-induced emission spectroscopy of acridine cooled in a supersonic jet: the role of dimers and hydrogen-bonding in photophysics of acridine
J Prochorow, I Deperasińska and O Morawski Journal of Molecular Structure 555 (1-3) 97 (2000) https://doi.org/10.1016/S0022-2860(00)00591-3
Fluorescence excitation and fluorescence spectra of jet-cooled acridine molecules: acridine dimer formation and structure
J. Prochorow, I. Deperasińska and O. Morawski Chemical Physics Letters 316 (1-2) 24 (2000) https://doi.org/10.1016/S0009-2614(99)01240-3
Fluorescence and surface-enhanced Raman study of 9-aminoacridine in relation to its aggregation and excimer emission in aqueous solution and on silver surface
A. Murza, S. Sánchez-Cortés and J. V. García-Ramos Biospectroscopy 4 (5) 327 (1998) https://doi.org/10.1002/(SICI)1520-6343(1998)4:5<327::AID-BSPY4>3.0.CO;2-H
Vibrational spectroscopic investigation of metal[II] tetracyanonickelate complexes of 4-acetylpyridine and acridine
Ş. Yurdakul, M.T. Güllüoǧlu, D. Küçükgüldal and M. Taşdelen Journal of Molecular Structure 408-409 319 (1997) https://doi.org/10.1016/S0022-2860(96)09675-5
SERS Study of Acridine Adsorption on Copper Electrode
G. Niaura and A. Malinauskas Berichte der Bunsengesellschaft für physikalische Chemie 99 (10) 1221 (1995) https://doi.org/10.1002/bbpc.199500063
Detailed Quantummechanical Calculations of Molecular Vibration Frequencies of Benzene, Naphthalene, Anthracene and Phenanthrene. Comparison of Several Quantumchemical Methods
Emine Cebe and Günter Grampp Zeitschrift für Physikalische Chemie 187 (1) 15 (1994) https://doi.org/10.1524/zpch.1994.187.Part_1.015
SER spectra of acridine and acridinium ions in colloidal silver sols. Electrolytes and PH effects
G. Lévi, J. Pantigny, J. P. Marsault and J. Aubard Journal of Raman Spectroscopy 24 (11) 745 (1993) https://doi.org/10.1002/jrs.1250241105
Normal coordinate analysis and MNDO calculations: Assignment of the vibrational spectrum of acridine
Catherine A. Butler and Ralph P. Cooney Journal of Raman Spectroscopy 24 (4) 199 (1993) https://doi.org/10.1002/jrs.1250240404
Spectres de vibration de pigments rouges de la famille des quinacridones
C. Binant, B. Guineau and A. Lautie Spectrochimica Acta Part A: Molecular Spectroscopy 45 (12) 1279 (1989) https://doi.org/10.1016/0584-8539(89)80241-7
Etude de l'acridinone par spectrometries i.r. et Raman: C13H9NO et C13H8DNO
Corinne Binant and Alain Lautie Spectrochimica Acta Part A: Molecular Spectroscopy 44 (10) 969 (1988) https://doi.org/10.1016/0584-8539(88)80214-9
Synthèse et étude dipolmétrique de thio-9 acridanones monomères diversement substituées: incidence sur les interactions avec l'ADN
Said Ammor, Pierre Brouant, Anne-Marie Galy, et al. European Journal of Medicinal Chemistry 22 (2) 125 (1987) https://doi.org/10.1016/0223-5234(87)90006-7
Study of the adsorption of acridine and phenazine on aluminum oxide using tunnelling spectroscopy
R.J. Graves and H.W. White Spectrochimica Acta Part A: Molecular Spectroscopy 43 (1) 107 (1987) https://doi.org/10.1016/0584-8539(87)80206-4
Resonance CARS Study of Electronic Excited Molecules
Shiro Maeda, Toshio Kamisuki, Haruhiko Kataoka and Yukio Adachi Applied Spectroscopy Reviews 21 (3) 211 (1985) https://doi.org/10.1080/05704928508060431
Symmetry assignment of vibrations in anthracene, phenazine, and acridine from infrared dichroism in stretched polyethylene
Juliusz G. Radziszewski and Josef Michl The Journal of Chemical Physics 82 (8) 3527 (1985) https://doi.org/10.1063/1.448979
Resonance Raman scattering from triplet states of acridine and anthracene
Piet H.M. Van Zeyl, Cyrill A.G.O. Varma and Gertjan Vroege Chemical Physics Letters 105 (2) 127 (1984) https://doi.org/10.1016/0009-2614(84)85635-3
Triplet state (T1) resonance Raman spectroscopy of phenazine and acridine
R.J. Kessler, M.R. Fisher and G.N.R. Tripathi Chemical Physics Letters 112 (6) 575 (1984) https://doi.org/10.1016/0009-2614(84)85782-6
Tunneling Spectroscopy
Henry W. White Tunneling Spectroscopy 287 (1982) https://doi.org/10.1007/978-1-4684-1152-2_10
Matrix-isolation triplet (T1) state IR spectroscopy of acridine and phenazine
Mark B. Mitchell, George R. Smith and William A. Guillory The Journal of Chemical Physics 75 (1) 44 (1981) https://doi.org/10.1063/1.441805
IR absorption spectra and association of acridinium salts with hydrogen halide molecules
A. N. Sidorov Chemistry of Heterocyclic Compounds 17 (1) 81 (1981) https://doi.org/10.1007/BF00507098
Vibrational analyses, vibronic coupling and identification of electronic origins in the lower 1nπ* and 1ππ* states of phenazine and acrid
David L. Narva and Donald S. McClure Chemical Physics 56 (2) 167 (1981) https://doi.org/10.1016/0301-0104(81)80003-1
Etude par spectrométrie i.r. et Raman de l'indole et de l'indolizine. Liaison hydrogène NH ⋯ π
A. Lautié, M.F. Lautié, A. Gruger and S.A. Fakhri Spectrochimica Acta Part A: Molecular Spectroscopy 36 (1) 85 (1980) https://doi.org/10.1016/0584-8539(80)80062-6
The infrared and visible absorption spectra of the lowest triplet state of acridine isolated in an argon matrix
Mark B. Mitchell, George R. Smith, Kathy Jansen and W.A. Guillory Chemical Physics Letters 63 (3) 475 (1979) https://doi.org/10.1016/0009-2614(79)80693-4
Spectres infrarouge et Raman du dfflydro-9,10 anthracène et du dihydroanthracène-D4(9,10) comparaison avec les spectres de L.anthracène
Maryvonne Brigodiot and Jeanne Maris Lebas Journal of Molecular Structure 32 (2) 297 (1976) https://doi.org/10.1016/0022-2860(76)85008-9
Spectre infrarouge du cation anthracénium
Maryvonne Brigodiot and Jeanne Marie Lebas Journal of Molecular Structure 32 (2) 311 (1976) https://doi.org/10.1016/0022-2860(76)85009-0