The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. G. Evans , N. S. Hush
J. Chim. Phys., 49 (1952) C159-C171
Published online: 2017-06-07
This article has been cited by the following article(s):
41 articles
Jeffrey R. Reimers and Laura K. Mckemmish 662 (2024) https://doi.org/10.1016/B978-0-12-821978-2.00013-1
Jeffrey R. Reimers and Laura K. McKemmish 45 (2023) https://doi.org/10.1002/9783527835287.ch2
A Pioneering Career in Electrochemistry: Jean-Michel Savéant
Cyrille Costentin, Benoît Limoges, Marc Robert and Cédric Tard ACS Catalysis 11 (6) 3224 (2021) https://doi.org/10.1021/acscatal.0c05632
Theoretical and Applied Aspects of Hydrodechlorination Processes—Catalysts and Technologies
M.R. Flid, L.M. Kartashov and Yu.A. Treger Catalysts 10 (2) 216 (2020) https://doi.org/10.3390/catal10020216
A Marcus-Hush perspective on adiabatic singlet fission
Timothy W. Schmidt The Journal of Chemical Physics 151 (5) (2019) https://doi.org/10.1063/1.5108669
Electrochemistry in a Divided World
Victor G. Mairanovsky Electrochemistry in a Divided World 257 (2015) https://doi.org/10.1007/978-3-319-21221-0_9
Automatic solution of integral equations describing electrochemical transients under conditions of internal cylindrical diffusion
Lesław K. Bieniasz Journal of Electroanalytical Chemistry 700 30 (2013) https://doi.org/10.1016/j.jelechem.2013.04.010
Automatic solution of the Singh and Dutt integral equations for channel or tubular electrodes, by the adaptive Huber method
Lesław K. Bieniasz Journal of Electroanalytical Chemistry 693 95 (2013) https://doi.org/10.1016/j.jelechem.2013.01.028
Automatic solution of integral equations describing electrochemical transients under conditions of internal spherical diffusion
Lesław K. Bieniasz Journal of Electroanalytical Chemistry 694 104 (2013) https://doi.org/10.1016/j.jelechem.2013.01.043
Automatic simulation of electrochemical transients assuming finite diffusion space at planar interfaces, by the adaptive Huber method for Volterra integral equations
Lesław K. Bieniasz Journal of Electroanalytical Chemistry 684 20 (2012) https://doi.org/10.1016/j.jelechem.2012.08.019
Electron Transfer Initiated Reactions: Bond Formation and Bond Dissociation
Abdelaziz Houmam Chemical Reviews 108 (7) 2180 (2008) https://doi.org/10.1021/cr068070x
Electron transfer and bond breaking: Recent advances
Cyrille Costentin, Marc Robert and Jean-Michel Savéant Chemical Physics 324 (1) 40 (2006) https://doi.org/10.1016/j.chemphys.2005.09.029
“The molecules and methods of chemical, biochemical, and nanoscale electron transfer”
Jeffrey R. Reimers, Jens Ulstrup, Thomas J. Meyer and Gemma C. Solomon Chemical Physics 324 (1) 1 (2006) https://doi.org/10.1016/j.chemphys.2006.03.001
Electron transfer in retrospect and prospect
N.S. Hush Journal of Electroanalytical Chemistry 460 (1-2) 5 (1999) https://doi.org/10.1016/S0022-0728(98)00371-4
Electron transfer in retrospect and prospect 1: Adiabatic electrode processes
N.S. Hush Journal of Electroanalytical Chemistry 470 (2) 170 (1999) https://doi.org/10.1016/S0022-0728(99)00168-0
A simple computer-based method for calculation of kinetic parameters from chronoamperometric and chronocoulometric data
Jose Miguel Rodríguez Mellado Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 209 (1) 57 (1986) https://doi.org/10.1016/0022-0728(86)80185-1
Implications of extended heterogeneous electron transfer
Stephen W. Feldberg Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 198 (1) 1 (1986) https://doi.org/10.1016/0022-0728(86)90021-5
On the analysis of transients of the form
R. Sridharan and R. De Levie Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 170 (1-2) 387 (1984) https://doi.org/10.1016/0022-0728(84)80063-7
The extraction of kinetic parameters from chronoamperometric or chronocoulometric data
Keith B. Oldham Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 145 (1) 9 (1983) https://doi.org/10.1016/S0022-0728(83)80289-7
Electrode processes with a fast and ultrafast bond cleavage
V.G. Mairanovsky Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 125 (1) 231 (1981) https://doi.org/10.1016/S0022-0728(81)80339-7
A Contribution to the Theory of Pulse Polarography. I. Theory of Current-Potential Curves
Hiroaki Matsuda Bulletin of the Chemical Society of Japan 53 (12) 3439 (1980) https://doi.org/10.1246/bcsj.53.3439
Anodic Oxidation
Organic Chemistry: A Series of Monographs, Anodic Oxidation 32 23 (1975) https://doi.org/10.1016/S1874-5954(13)70018-4
Quasi-reversible and irreversible charge transfer at the tubular electrode
Leon N. Klatt and Walter J. Blaedel Analytical Chemistry 39 (10) 1065 (1967) https://doi.org/10.1021/ac60254a014
Ion specific membranes as electrodes in determination of activity of calcium
. Shatkay Analytical Chemistry 39 (10) 1056 (1967) https://doi.org/10.1021/ac60254a018
Zum einfluss des leitelektrolyten auf die polarographi- sche reduktion des methylbromids
Hans-Joachim Thamm Analytica Chimica Acta 35 453 (1966) https://doi.org/10.1016/S0003-2670(01)81708-6
Alternating current polarography with multi-step charge transfer
Hoying L. Hung and Donald E. Smith Journal of Electroanalytical Chemistry (1959) 11 (4) 237 (1966) https://doi.org/10.1016/0022-0728(66)80089-X
Batteries 2
J.M. HALE Batteries 2 147 (1965) https://doi.org/10.1016/B978-1-4831-6705-3.50016-2
Principles of Polarography
Jaroslav Heyrovský and Jaroslav Kůta Principles of Polarography 205 (1965) https://doi.org/10.1016/B978-0-12-346650-1.50018-7
Charles L. Perrin 3 165 (1965) https://doi.org/10.1002/9780470171820.ch4
Antonìn A. Vlček 5 211 (1963) https://doi.org/10.1002/9780470166062.ch3
Polarography of organic halogen compounds
L. G. Feoktistov and S. I. Zhdanov Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 11 (12) 2036 (1962) https://doi.org/10.1007/BF00911360
Philip J. Elving and Bernard Pullman 3 1 (1961) https://doi.org/10.1002/9780470143490.ch1
Advances in Polarography
RUDOLF BRDIČKA Advances in Polarography 655 (1960) https://doi.org/10.1016/B978-1-4831-9845-3.50028-3
Electrode reactions of the methyl halides
N. S. Hush Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 61 (6) 734 (1957) https://doi.org/10.1002/bbpc.19570610606
Verification of a Theory of Irreversible Polarographic Waves
Pekka Kivalo, K. B. Oldham and H. A. Laitinen Journal of the American Chemical Society 75 (17) 4148 (1953) https://doi.org/10.1021/ja01113a007
Polarography of Tungsten(VI) in Hydrochloric Acid. Mechanism of the Tungsten(V)—Tungsten(III) Wave
H. A. Laitinen, K. B. Oldham and William A. Ziegler Journal of the American Chemical Society 75 (13) 3048 (1953) https://doi.org/10.1021/ja01109a002
Absolute Entropies in Liquid Ammonia
Wendell M. Latimer and William L. Jolly Journal of the American Chemical Society 75 (17) 4147 (1953) https://doi.org/10.1021/ja01113a006
THE VIBRATIONAL SPECTRUM OF TETRACHLORODIBORINE
M. J. Linevsky, E. R. Shull, D. E. Mann and Thomas Wartik Journal of the American Chemical Society 75 (13) 3287 (1953) https://doi.org/10.1021/ja01109a519
A THEORY OF A CERTAIN TYPE OF IRREVERSIBLE POLAROGRAPHIC WAVE
Pekka Kivalo Journal of the American Chemical Society 75 (13) 3286 (1953) https://doi.org/10.1021/ja01109a518
COMMUNICATIONS TO THE EDITOR
Journal of the American Chemical Society 75 (13) 3284 (1953) https://doi.org/10.1021/ja01109a068
Reduction Potentials and Unsaturation Energy Changes in Electrode Reactions Leading to the Formation of Acridyl Radicals
N. S. Hush The Journal of Chemical Physics 20 (10) 1660 (1952) https://doi.org/10.1063/1.1700258