The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Edmond Schouler , Georges Giroud , Michel Kleitz
J. Chim. Phys., 70 (1973) 1309-1316
Published online: 2017-05-28
This article has been cited by the following article(s):
42 articles
The CO2 electrolysing mechanism in single-phase mixed-conducting cathode of solid oxide cell
Zidi Zhu, Yunan Jiang, Lijie Zhang, Hairui Han, Aijun Li and Changrong Xia Frontiers in Chemistry 12 (2024) https://doi.org/10.3389/fchem.2024.1421125
Electrocatalytic surface nanoionics with strained interfaced and colossal conductivity for enhancing durability and performance of solid oxide fuel cell
Yun Chen, Cesar O. Romo-De-La-Cruz, Sergio A. Paredes-Navia, et al. Journal of Power Sources 517 230715 (2022) https://doi.org/10.1016/j.jpowsour.2021.230715
Coating internal surface of porous electrode for decreasing the ohmic resistance and shifting oxygen reduction reaction pathways in solid oxide fuel cells
Yun Chen, Sergio A. Paredes-Navia, Cesar-Octavio Romo-De-La-Cruz, et al. Journal of Power Sources 499 229854 (2021) https://doi.org/10.1016/j.jpowsour.2021.229854
481 (2018) https://doi.org/10.1002/9781119381860.biblio
Progress in material selection for solid oxide fuel cell technology: A review
Neelima Mahato, Amitava Banerjee, Alka Gupta, Shobit Omar and Kantesh Balani Progress in Materials Science 72 141 (2015) https://doi.org/10.1016/j.pmatsci.2015.01.001
Nonstoichiometric (La0.95Sr0.05)xGa0.9Mg0.1O3−δ electrolytes and Ce0.8Nd0.2O1.9–(La0.95Sr0.05)xGa0.9Mg0.1O3−δ composite electrolytes for solid oxide fuel cells
X.P. Wang, D.F. Zhou, G.C. Yang, et al. International Journal of Hydrogen Energy 39 (2) 1005 (2014) https://doi.org/10.1016/j.ijhydene.2013.10.096
Microstructure evolution model of zirconia solid electrolyte based on AC impedance model analysis
Hu Yong-Gang, Xia Feng, Xiao Jian-Zhong, Lei Chao and Li Xiang-Dong Acta Physica Sinica 61 (9) 098102 (2012) https://doi.org/10.7498/aps.61.098102
Reduction of oxygen at the interface M|solid oxide electrolyte (M=Pt, Ag and Au, solid oxide electrolyte=YSZ and GDC). Autocatalysis or artifact?
Andrzej Raźniak, Magdalena Dudek and Piotr Tomczyk Catalysis Today 176 (1) 41 (2011) https://doi.org/10.1016/j.cattod.2011.04.030
Interpretation of Low Temperature Solid Oxide Fuel Cell Electrochemical Impedance Spectra
Timothy P. Holme, Rojana Pornprasertsuk and Fritz B. Prinz Journal of The Electrochemical Society 157 (1) B64 (2010) https://doi.org/10.1149/1.3251291
Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes
Stuart B. Adler Chemical Reviews 104 (10) 4791 (2004) https://doi.org/10.1021/cr020724o
Origin of the hump on the left shoulder of the X-ray diffraction peaks observed in Y2O3-fully and partially stabilized ZrO2
Junya Kondoh Journal of Alloys and Compounds 375 (1-2) 270 (2004) https://doi.org/10.1016/j.jallcom.2003.11.129
Lanthanide co-doping of solid electrolytes: AC conductivity behaviour
J. van Herle, D. Seneviratne and A.J. McEvoy Journal of the European Ceramic Society 19 (6-7) 837 (1999) https://doi.org/10.1016/S0955-2219(98)00327-6
The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate
Sossina M. Haile, David L. West and John Campbell Journal of Materials Research 13 (6) 1576 (1998) https://doi.org/10.1557/JMR.1998.0219
Analysis of Electrical Conduction Paths in Ni/YSZ Particulate Composites Using Percolation Theory
Tsuyoshi Kawashima and Masakazu Hishinuma Materials Transactions, JIM 37 (7) 1397 (1996) https://doi.org/10.2320/matertrans1989.37.1397
Impedance spectroscopy of Mg-partially stabilized zirconia and cubic phase decomposition
E.N.S. Muccillo and M. Kleitz Journal of the European Ceramic Society 16 (4) 453 (1996) https://doi.org/10.1016/0955-2219(95)00125-5
Deposition and Characterization of Li2O–SiO2–P2O5 Thin Films
John B. Bates, Nancy J. Dudney, Chris F. Luck, Brian C. Sales, Raymond A. Zuhr and J. David Robertson Journal of the American Ceramic Society 76 (4) 929 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb05317.x
Solid State Materials
Osamu Yamamoto, Takayuki Kawahara, Kazushige Kohno, Yasuo Takeda and Nobuyuki Imanshi Solid State Materials 366 (1991) https://doi.org/10.1007/978-3-662-09935-3_24
Electrical conductivity of tetragonal stabilized zirconia
O. Yamamoto, Y. Takeda, R. Kanno and K. Kohno Journal of Materials Science 25 (6) 2805 (1990) https://doi.org/10.1007/BF00584884
Selected Topics in High Temperature Chemistry - Defect Chemistry of Solids
ØIVIND Johannesen Studies in Inorganic Chemistry, Selected Topics in High Temperature Chemistry - Defect Chemistry of Solids 9 143 (1989) https://doi.org/10.1016/B978-0-444-88534-0.50012-6
Electrical conductivity of the system ThO2Er2O3
Kyung Moon Choi, Keu Hong Kim and Jae Shi Choi Journal of Physics and Chemistry of Solids 49 (9) 1027 (1988) https://doi.org/10.1016/0022-3697(88)90149-7
Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements
R. GERHARDT and A. S. NOWICK Journal of the American Ceramic Society 69 (9) 641 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07464.x
Electrical behaviour of doped-yttria stabilized zirconia ceramic materials
C. Pascual, J. R. Jurado and P. Duran Journal of Materials Science 18 (5) 1315 (1983) https://doi.org/10.1007/BF01111948
In situ study of the sintering process of yttria stabilized zirconia by impedance spectroscopy
E.J.L Schouler, N Mesbahi and G Vitter Solid State Ionics 9-10 989 (1983) https://doi.org/10.1016/0167-2738(83)90120-0
Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88-(Y2O3)0.12]
P. Abelard and J. F. Baumard Physical Review B 26 (2) 1005 (1982) https://doi.org/10.1103/PhysRevB.26.1005
Microstructural Analysis of Sintered High‐Conductivity Zirconia with Al203 Additions
E.P. BUTLER and J. DRENNAN Journal of the American Ceramic Society 65 (10) 474 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10336.x
Influence of Annealing on the Electrical Conductivity of Polycrystalline ZrO2+8 Wt% Y2O3
F. K. MOGHADAM and D. A. STEVENSON Journal of the American Ceramic Society 65 (4) 213 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10407.x
Nonstoichiometric Oxides
J.A. Kilner and B.C.H. Steele Nonstoichiometric Oxides 233 (1981) https://doi.org/10.1016/B978-0-12-655280-5.50010-9
Grain boundary effects on ionic conductivity in ceramic GdxZr1–xO2–(x/2) solid solutions
T. van Dijk and A. J. Burggraaf Physica Status Solidi (a) 63 (1) 229 (1981) https://doi.org/10.1002/pssa.2210630131
Studies on Electrode Processes of Stabilized Zirconia Cell System by Complex Impedance Method
Jun Sasaki, Junichiro Mizusaki, Shigeru Yamauchi and Kazuo Fueki Bulletin of the Chemical Society of Japan 54 (6) 1688 (1981) https://doi.org/10.1246/bcsj.54.1688
Complex impedance and admittance of stabilised zirconia
Sanjiv Kumar and E.C. Subbarao Solid State Ionics 5 543 (1981) https://doi.org/10.1016/0167-2738(81)90312-X
Surfaces and Interfaces in Ceramic and Ceramic — Metal Systems
T. Stratton, A. McHale, D. Button and H. L. Tuller Surfaces and Interfaces in Ceramic and Ceramic — Metal Systems 71 (1981) https://doi.org/10.1007/978-1-4684-3947-2_6
The “grain-boundary effect” in doped ceria solid electrolytes
Da Yu Wang and A.S. Nowick Journal of Solid State Chemistry 35 (3) 325 (1980) https://doi.org/10.1016/0022-4596(80)90529-0
Solid Electrolytes and Their Applications
C. B. Choudhary, H. S. Maiti and E. C. Subbarao Solid Electrolytes and Their Applications 1 (1980) https://doi.org/10.1007/978-1-4613-3081-3_1
Ionic conductivity of 8mol.%Sc2O3ZrO2 measured by use of both A.C. and D.C. techniques
T.M. Gur, I.D. Raistrick and R.A. Huggins Materials Science and Engineering 46 (1) 53 (1980) https://doi.org/10.1016/0025-5416(80)90189-5
Ion exchange between two solid-oxide electrolytes
P. Fabry, E. Schouler and M. Kleitz Electrochimica Acta 23 (6) 539 (1978) https://doi.org/10.1016/0013-4686(78)85033-6
Solid Electrolytes
E. BERGMANN and H. TANNENBERGER Solid Electrolytes 173 (1978) https://doi.org/10.1016/B978-0-12-313360-1.50016-X
Complex impedance of electrochemical cells based on yttria doped thoria
E. Schouler, A. Hammou and M. Kleitz Materials Research Bulletin 11 (9) 1137 (1976) https://doi.org/10.1016/0025-5408(76)90013-1
Correlation between impedance, microstructure and composition of calcia-stabilized zirconia
N.M. Beekmans and L. Heyne Electrochimica Acta 21 (4) 303 (1976) https://doi.org/10.1016/0013-4686(76)80024-2
Electrically renewable and controllable oxygen getter
J Fouletier and M Kleitz Vacuum 25 (7) 307 (1975) https://doi.org/10.1016/0042-207X(75)90731-9
Effect of the grain size on the conductivity of high-purity pore-free ceramics Y2O8–ZrO2
A. I. Ioffe, M. V. Inozemtsev, A. S. Lipilin, M. V. Perfilev and S. V. Karpachov Physica Status Solidi (a) 30 (1) 87 (1975) https://doi.org/10.1002/pssa.2210300109
Capacitive effects at an oxygen—silver-stabilized zirconia interface
E. Schouler and M. Kleitz Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 64 (1) 135 (1975) https://doi.org/10.1016/S0022-0728(75)80284-1
Influence of the metal and the electrolyte composition on the characteristics of the oxygen electrode reaction on solid oxide electrolyte
P. Fabry and M. Kleitz Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 57 (2) 165 (1974) https://doi.org/10.1016/S0022-0728(74)80020-3