Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Systematic study on the hydrogen abstraction reactions from oxygenated compounds by H and HO2

Hiroki Oppata, Daisuke Shimokuri and Akira Miyoshi
International Journal of Chemical Kinetics 57 (3) 164 (2025)
https://doi.org/10.1002/kin.21761

Data availability and requirements relevant for the Ariel space mission and other exoplanet atmosphere applications

Katy L Chubb, Séverine Robert, Clara Sousa-Silva, Sergei N Yurchenko, Nicole F Allard, Vincent Boudon, Jeanna Buldyreva, Benjamin Bultel, Athena Coustenis, Aleksandra Foltynowicz, Iouli E Gordon, Robert J Hargreaves, Christiane Helling, Christian Hill, Helgi Rafn Hrodmarsson, Tijs Karman, Helena Lecoq-Molinos, Alessandra Migliorini, Michaël Rey, Cyril Richard, Ibrahim Sadiek, Frédéric Schmidt, Andrei Sokolov, Stefania Stefani, Jonathan Tennyson, et al.
RAS Techniques and Instruments 3 (1) 636 (2024)
https://doi.org/10.1093/rasti/rzae039

An extensively validated C/H/O/N chemical network for hot exoplanet disequilibrium chemistry

R. Veillet, O. Venot, B. Sirjean, R. Bounaceur, P.-A. Glaude, A. Al-Refaie and E. Hébrard
Astronomy & Astrophysics 682 A52 (2024)
https://doi.org/10.1051/0004-6361/202346680

Chemical Kinetics of H-Atom Abstraction from Ethanol by HȮ2: Implication for Combustion Modeling

Qian Zhao, Yingjia Zhang, Wuchuan Sun, et al.
The Journal of Physical Chemistry A 123 (5) 971 (2019)
https://doi.org/10.1021/acs.jpca.8b09074

Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances

T. Cavalié, O. Venot, F. Selsis, et al.
Icarus 291 1 (2017)
https://doi.org/10.1016/j.icarus.2017.03.015

A modeling study of the effect of surface reactions on methanol–air oxidation at low temperatures

Jiepeng Huo, Haolin Yang, Liqiao Jiang, Xiaohan Wang and Daiqing Zhao
Combustion and Flame 164 363 (2016)
https://doi.org/10.1016/j.combustflame.2015.11.033

Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2+CH3OH and O2+CH3OH

Stephen J. Klippenstein, Lawrence B. Harding, Michael J. Davis, Alison S. Tomlin and Rex T. Skodje
Proceedings of the Combustion Institute 33 (1) 351 (2011)
https://doi.org/10.1016/j.proci.2010.05.066

Autoignition of methanol: Experiments and computations

Kamal Kumar and Chih‐Jen Sung
International Journal of Chemical Kinetics 43 (4) 175 (2011)
https://doi.org/10.1002/kin.20546

Development and Validation of a Reduced Chemical Kinetic Model for Methanol Oxidation

S.-Y. Liao, H.-M. Li, L. Mi, et al.
Energy & Fuels 25 (1) 60 (2011)
https://doi.org/10.1021/ef101335q

Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. 2. Accurate Thermal Rate Constants

I. M. Alecu and Donald G. Truhlar
The Journal of Physical Chemistry A 115 (51) 14599 (2011)
https://doi.org/10.1021/jp209029p

Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH3OH+OH reaction

Christian Lund Rasmussen, Karin Hedebo Wassard, Kim Dam‐Johansen and Peter Glarborg
International Journal of Chemical Kinetics 40 (7) 423 (2008)
https://doi.org/10.1002/kin.20323

A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion

Juan Li, Zhenwei Zhao, Andrei Kazakov, Marcos Chaos, Frederick L. Dryer and James J. Scire
International Journal of Chemical Kinetics 39 (3) 109 (2007)
https://doi.org/10.1002/kin.20218

Methanol Oxidation and Its Interaction with Nitric Oxide

M. U. Alzueta, R. Bilbao and M. Finestra
Energy & Fuels 15 (3) 724 (2001)
https://doi.org/10.1021/ef0002602

Elementary Reactions in the Methanol Oxidation System. Part I: Establishment of the Mechanism and Modelling of Laminar Burning Velocities

Horst‐Henning Grotheer, Siegfried Kelm, H. S. T. Driver, R. J. Hutcheon, R. D. Lockett and G. N. Robertson
Berichte der Bunsengesellschaft für physikalische Chemie 96 (10) 1360 (1992)
https://doi.org/10.1002/bbpc.19920961007

An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor

T. S. Norton and F. L. Dryer
International Journal of Chemical Kinetics 24 (4) 319 (1992)
https://doi.org/10.1002/kin.550240403

A Comprehensive Study of Methanol Kinetics in Freely-Propagating and Burner-Stabilized Flames, Flow and Static Reactors, and Shock Tubes

F. N. EGOLFOPOULOS, D. X. DU and C. K. LAW
Combustion Science and Technology 83 (1-3) 33 (1992)
https://doi.org/10.1080/00102209208951823

Elementary Reactions in the Methanol Oxidation System. Part II: Measurement and Modeling of Autoignition in a Methanol‐Fuelled Otto Engine

H. S. T. Driver, R. J. Hutcheon, R. D. Lockett, G. N. Robertson, Horst‐Henning Grotheer and Siegfried Kelm
Berichte der Bunsengesellschaft für physikalische Chemie 96 (10) 1376 (1992)
https://doi.org/10.1002/bbpc.19920961008

Toward a comprehensive mechanism for methanol pyrolysis

T. S. Norton and F. L. Dryer
International Journal of Chemical Kinetics 22 (3) 219 (1990)
https://doi.org/10.1002/kin.550220303

ChemInform Abstract: STUDY OF METHANOL OXIDATION AND SELF-IGNITION FROM 500 TO 600°

M. CATHONNET, J. C. BOETTNER and H. JAMES
Chemischer Informationsdienst 13 (50) (1982)
https://doi.org/10.1002/chin.198250103