Issue |
J. Chim. Phys.
Volume 78, 1981
|
|
---|---|---|
Page(s) | 369 - 372 | |
DOI | https://doi.org/10.1051/jcp/1981780369 | |
Published online | 29 May 2017 |
A new basis for the analysis of ion activity coefficient data. I. The parabolic law*
Chemistry Department, College of Science, the University of Texas, El Paso, Texas 79968.
As is well known, over an extended concentration range a plot of the log of the mean molal activity coefficient vs. the square root of the modality of an electrolyte is not even approximately linear. In fact, γ± itself (not log γ±) is a parabolic function of [math] or [math] over the entire concentration range (0 to 3 molal) for all 1-1 strong electrolytes and for most others of different charge types. Thus, It will be shown that γ± = αm + β[math] + δ. Evaluation of the constants α, β, and δ shown that δ = 1, β = — 2α[math], and α = (1 — γ0)/m0, where y0 is the minimum activity coefficient observed at concentration m0 for a particular 1-1 electrolyte. This leads to the general equation γ = 1 + (1 — γ0) m/m0 + 2 (γ0 — 1) [math]/m0, which can be put in the linear form (1 — γ)/[math] = 2 (1-γ0)/ [math] — (1 — γ0) [math]/[math]. Thus a plot of (1 — γ)/ [math] vs. [math] is a straight line of slope (γ0 — 1)/m0 and intercept 2 (1 — γ0)/ [math]. From the slope (= α) and the Intercept (= β), one obtains m0 = (β/2α)2 and γ0 = 1 — β2/4α. After passing through the minimum of the parabola, γ± rises and again becomes unity (γ1) at some higher molal concentration m1, and It is shown that m1 = 4m0. The parameters γ0, m0, γ1, and m1 must have a profound significance in any detailed theory of electrolytic solutions, a significance we are currently investigating. The new equations are compared with detailed experimental data with excellent results.
Résumé
Dans un large domaine de concentrations, la relation entre log du coefficient d'activité moyen et racine carrée de la molalité d'un électrolyte n'est pas linéaire. En fait γ± (et non log γ±) est une fonction parabolique de [math] ou [math] dans tous le domaine (molalité 0 à 3) de concentrations pour tous les électrolytes forts 1-1 et la plupart des autres. On établit que γ± = αm + β[math] + δ et l'évaluation d'α, β et δ en fonction de γ0, coefficient minimal d'activité observé à la concentration m0 pour un électrolyte 1-1 donné. On en tire une expression linéaire de γ en fonction de m, dont les pentes et ordonnée à l'origine fournissent γo et mo ; Lorsque γ± remonte et atteint la valeur unité pour une concentration m1 on montre que m1 = 4mo. L'accord est excellent entre les équations établies et l'expérience. La signification physique des diverses grandeurs calculées est en cours d'étude.
© Paris : Société de Chimie Physique, 1981