Issue |
J. Chim. Phys.
Volume 84, 1987
|
|
---|---|---|
Page(s) | 115 - 123 | |
DOI | https://doi.org/10.1051/jcp/1987840115 | |
Published online | 29 May 2017 |
Etude par spectroscopie rmn 13C de la solution aqueuse formaldehyde-methanol
Laboratoire de RMN et Réactivité Chimique. U A 472, U.E.R. de Chimie, 44072 Nantes-cedex, France.
Les solutions industrielles et commerciales de formol, contenant du méthanol, étaient jusqu’à présent mal connues à cause de la multiplicité des entités présentes dans les solutions. La R.M.N. du 13C permet une analyse structurale et quantitative de ces solutions car elle ne perturbe pas les équilibres en place. Ainsi, nous avons pu déterminer les proportions d’oxyméthylène —CH2O— présentes dans les différents oligomères HO(CH2O)nH et CH3O(CH2O)nH grâce à une attribution de la plus grande partie des raies de résonance 13C. Le mécanisme de stabilisation des solutions par le méthanol a été également établi à la suite d’une étude dynamique, mécanisme en contradiction avec les diverses hypothèses formulées jusqu’à présent.
Abstract
Formalin, formaldehyde in aqueous solution, is used in many realms, but the most important use is the production of phenol-formaldehyde resin (20 %) and urea-formaldehyde resin or foam (25 %). However, despite decades of research, industrial and commercial formaldehyde-methanol solutions were, up to now, badly known; the reason being the great number of species equilibrated in these solution. Nevertheless, 13C NMR spectroscopy allowed structural and quantitative analysis without modifying the distribution of formaldehyde oligomers by direct silylation followed by GLC analysis. Relative amounts of the oxymethylene — CH2O— present in various oligomers HO(—CH2O)n— H and CH3O( — CH2O)n—H has been determinated by a full attribution of 13C NMR signals and by an addition of relaxation reagent for less time consuming quantitative conditions; in this case, the longer relaxation time T1 fell from 12 sec. to 0.9 sec. The stabilization mechanism of commercial solutions by methanol has also been obtained by dynamic study; this mechanism contradicts the several hypotheses stated up to now as methanol breaks down high molecular oligomers of poly (oxymethylene) glycols. Indeed, only methylene glycol CH2(OH)2 reacts with methanol to produce the formaldehyde hemiformal; then, the methylene glycol reacts with the latter to give the di-(formaldehyde) hemiformal and later the tri-(formaldehyde) and so on. The disappearance of methylene glycol induces shifting of equilibria and poly (oxymethylene) glycol depolymerisation, thus preventing precipitate formation. Moreover, the equilibrium constants between hemiacetal oligomers favourise the formation of the mono-formaldehyde hemiacetal oligomer.
© Paris : Société de Chimie Physique, 1987