Issue |
J. Chim. Phys.
Volume 88, 1991
|
|
---|---|---|
Page(s) | 791 - 802 | |
DOI | https://doi.org/10.1051/jcp/1991880791 | |
Published online | 29 May 2017 |
Cinétiques rapides dans les liquides sous rayonnement : aspects théoriques
Physical Chemistry Laboratory, South Parks Road, Oxford 0X1 3QZ, UK; Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
Cet article considère l’applicabilité des méthodes classiques de cinétique de réactions à des systèmes très nonhomogènes, comme les trajectoires de rayonnement. Deux modifications de la théorie sont nécessaires à cause de la proximité des particules dans la trajectoire. Premièrement, la formulation doit être stochastique, afin de prendre en considération le nombre entier de particules dans une grappe. Deuxièmement, la constante de vitesse doit dépendre du temps et décrire correctement la relaxation spatiale de la distribution nonhomogène. Trois façons d’aborder les cinétiques rapides sont décrites. Il est particulièrement important d’essayer les modèles pour s’assurer que les cinétiques théoriques représentent fidèlement la solution exacte à l’équation de diffusion.
Abstract
The applicability of classical methods of reaction kinetics to highly nonhomogeneous systems such as radiation tracks is discussed. Two modifications are required because of the clustering of reactive particles: the formalism must be stochastic, recognising the integer number of particles in a spur, and the rate constant must be time—dependent, describing correctly the relaxation of the nonhomogeneous distribution. Three approaches are discussed; particular attention is paid to ensuring that the modelled kinetics are an accurate representation of the exact solution to the diffusion problem.
- 1)
Monte Carlo simulation follows the diffusive trajectories of all the reactive particles in the system. The simulated kinetics are subject only to statistical errors. The method is computationally expensive, and care must be exercised to avoid errors which can arise when reactive particles are proximate.
- 2)
The independent reaction times (IRT) simulation method makes the simplifying approximation that reaction times are pairwise independent, conditional on the initial distribution. The model has been extended to include Coulomb forces and secondary reactions, and can be applied to large systems, such as complete tracks.
- 3)
A related analytic treatment is also described.
The theories are compared for several systems of interest and possible areas of future development are suggested.
© Elsevier, Paris, 1991