The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
A. Kratochwill , H. G. Hertz
J. Chim. Phys., 74 (1977) 814-824
Published online: 2017-05-29
This article has been cited by the following article(s):
25 articles
Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association?
Kenneth R. Harris The Journal of Physical Chemistry B 120 (47) 12135 (2016) https://doi.org/10.1021/acs.jpcb.6b08381
Structure and Nanostructure in Ionic Liquids
Robert Hayes, Gregory G. Warr and Rob Atkin Chemical Reviews 115 (13) 6357 (2015) https://doi.org/10.1021/cr500411q
Determination of outer-sphere dipolar time correlation functions from high-field NMR measurements. Example of a Gd3+ complex in a viscous solvent
Pascal H. Fries, Daniel Imbert and Andrea Melchior The Journal of Chemical Physics 132 (4) (2010) https://doi.org/10.1063/1.3291439
Single particle and pair dynamics in water–formic acid mixtures containing ionic and neutral solutes: Nonideality in dynamical properties
Rini Gupta and Amalendu Chandra The Journal of Chemical Physics 128 (18) (2008) https://doi.org/10.1063/1.2913058
Erratum to “The concept of associated solutions in historical development: Part 1. The 1884–1984 period” [J. Mol. Liq. 128 (2006) 1–31]
Alexander Apelblat Journal of Molecular Liquids 130 (1-3) 133 (2007) https://doi.org/10.1016/j.molliq.2006.09.001
The concept of associated solutions in historical development. Part 1. The 1884–1984 period
Alexander Apelblat Journal of Molecular Liquids 128 (1-3) 1 (2006) https://doi.org/10.1016/j.molliq.2006.02.005
Car−Parrinello Molecular Dynamics Simulation of Liquid Formic Acid
I. Bakó, J. Hutter and G. Pálinkás The Journal of Physical Chemistry A 110 (6) 2188 (2006) https://doi.org/10.1021/jp0546352
Structure of Liquid Formic Acid Investigated by First Principle and Classical Molecular Dynamics Simulations
Riccardo Chelli, Roberto Righini and Salvatore Califano The Journal of Physical Chemistry B 109 (35) 17006 (2005) https://doi.org/10.1021/jp051731u
Structural investigation of liquid formic acid by neutron diffraction. II: Isotopic substitution for DCOO[H/D]
Imre Bakó, Gábor Schubert, Tünde Megyes, et al. Chemical Physics 306 (1-3) 241 (2004) https://doi.org/10.1016/j.chemphys.2004.07.036
A Comprehensive Liquid Simulation Study of Neat Formic Acid
Péter Mináry, Pál Jedlovszky, Mihaly Mezei and László Turi The Journal of Physical Chemistry B 104 (34) 8287 (2000) https://doi.org/10.1021/jp000205u
Structural investigation of liquid formic acid
P. Jedlovszky, I. Bakó, G. Pálinkás and J.C. Dore Molecular Physics 86 (1) 87 (1995) https://doi.org/10.1080/00268979500101861
Hydrogen-Bonded Liquids
G. I. Swan Hydrogen-Bonded Liquids 139 (1991) https://doi.org/10.1007/978-94-011-3274-9_11
Ternary Diffusion in the Aqueous Solutions of MgCl2 + KCl, CdCl2 + KCl, ZnCl2 + KCl and Onsager's Reciprocity Relations
M. Spallek, H. G. Hertz, M. Funsch, H. Herrmann and H. Weingärtner Berichte der Bunsengesellschaft für physikalische Chemie 94 (3) 365 (1990) https://doi.org/10.1002/bbpc.19900940332
Rotational, Internal Rotational, and Translational Motion of Liquid i‐Propanol
T. Frech and H. G. Hertz Berichte der Bunsengesellschaft für physikalische Chemie 89 (9) 948 (1985) https://doi.org/10.1002/bbpc.19850890906
Pair Configuration of Maximum Occurrence Probability in Liquid Formic Acid as Determined from Neutron Scattering and Proton Magnetic Relaxation Results
H. Bertagnolli and H. G. Hertz Berichte der Bunsengesellschaft für physikalische Chemie 89 (5) 500 (1985) https://doi.org/10.1002/bbpc.19850890510
Nuclear spin relaxation and intermolecular interactions
H G Hertz, A Kratochwill and H Weingärtner Proceedings / Indian Academy of Sciences 94 (2) 337 (1985) https://doi.org/10.1007/BF02860227
The Structure of the Formic Acid Molecule in the Liquid State from Neutron Diffraction Measurements Involving Five Isotopically Different Species
H. Bertagnolli, P. Chieux and H. G. Hertz Berichte der Bunsengesellschaft für physikalische Chemie 88 (10) 977 (1984) https://doi.org/10.1002/bbpc.19840881011
An Investigation of Liquid Acetic Acid and its Mixtures with CCl4 and Cyclohexane by the Nuclear Magnetic Relaxation Method
W. Koch and H. G. Hertz Zeitschrift für Physikalische Chemie 130 (2) 139 (1982) https://doi.org/10.1524/zpch.1982.130.2.139
A study of association by hydrogen bonding in the system phenol-CCl4 by the nuclear magnetic relaxation method
W. Koch, H. Leiter and H. G. Hertz Journal of Solution Chemistry 10 (6) 419 (1981) https://doi.org/10.1007/BF00658010
The effects of H-bonding, change of state and molecular distortion on 2H and 17O nuclear quadrupole coupling constants: general theoretical considerations and specific application to formic acid
Jill E. Gready Chemical Physics 55 (1) 1 (1981) https://doi.org/10.1016/0301-0104(81)85080-X
Relative Molecular Orientation in Liquid Ethyl Bromide. A Reformulation of Previous Results
H. G. Hertz Zeitschrift für Physikalische Chemie 109 (1) 9 (1978) https://doi.org/10.1524/zpch.1978.109.1.009
Progress in Colloid & Polymer Science
H. G. Hertz Progress in Colloid & Polymer Science, Progress in Colloid & Polymer Science 65 92 (1978) https://doi.org/10.1007/BFb0117208
13C1H Intermolecular Relaxation Rate and Molecular Pair Distribution Function in Liquid Acetonitrile
A. Kratochwill Berichte der Bunsengesellschaft für physikalische Chemie 82 (8) 783 (1978) https://doi.org/10.1002/bbpc.19780820804
Lösungen und Adsorption
H. G. Hertz Lösungen und Adsorption 92 (1978) https://doi.org/10.1007/978-3-642-93664-7_10
A nuclear magnetic relaxation study of the system benzene-methanol
M. S. Ansari and A. Kratochwill Journal of Solution Chemistry 7 (9) 655 (1978) https://doi.org/10.1007/BF00652016