Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Rate constant and branching ratio of the reaction of ethyl peroxy radicals with methyl peroxy radicals

Cuihong Zhang, Chuanliang Li, Weijun Zhang, et al.
Physical Chemistry Chemical Physics 25 (27) 17840 (2023)
https://doi.org/10.1039/D3CP01141K

Evaluation of reaction between SO2 and CH2OO in MCM mechanism against smog chamber data from ethylene ozonolysis

Hailiang Zhang, Long Jia, Yongfu Xu and Zongbo Shi
Environmental Chemistry 20 (6) 235 (2023)
https://doi.org/10.1071/EN23029

Self-Reaction of Acetonyl Peroxy Radicals and Their Reaction with Cl Atoms

Mohamed Assali and Christa Fittschen
The Journal of Physical Chemistry A 126 (28) 4585 (2022)
https://doi.org/10.1021/acs.jpca.2c02602

Mechanistic and kinetic study on the reaction of the·Cl‐initiated atmospheric degradation of CFCl2O2

Yunju Zhang, He Bing and Ruojing Song
Journal of Physical Organic Chemistry 34 (2) (2021)
https://doi.org/10.1002/poc.4130

A density functional theory study on the atmospheric reaction of CH3O2 with HS: Mechanism and kinetics

Shiguo Zhang, Yan Zhang, Yun Zhang, Ziyan Feng, Caihong Wang, He Bian and Jinshe Chen
International Journal of Quantum Chemistry 120 (17) (2020)
https://doi.org/10.1002/qua.26330

The relevance of reactions of the methyl peroxy radical (CH3O2) and methylhypochlorite (CH3OCl) for Antarctic chlorine activation and ozone loss

A. Mannan Zafar, Rolf Müller, Jens-Uwe Grooss, et al.
Tellus B: Chemical and Physical Meteorology 70 (1) 1507391 (2018)
https://doi.org/10.1080/16000889.2018.1507391

Kinetics of the ClO + CH3O2 reaction over the temperature range T = 250–298 K

Michael K. M. Ward and David M. Rowley
Physical Chemistry Chemical Physics 18 (19) 13646 (2016)
https://doi.org/10.1039/C6CP00724D

Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem

Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, et al.
Atmospheric Chemistry and Physics 16 (18) 12239 (2016)
https://doi.org/10.5194/acp-16-12239-2016

A large and ubiquitous source of atmospheric formic acid

D. B. Millet, M. Baasandorj, D. K. Farmer, et al.
Atmospheric Chemistry and Physics 15 (11) 6283 (2015)
https://doi.org/10.5194/acp-15-6283-2015

Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

B. Yuan, P. R. Veres, C. Warneke, et al.
Atmospheric Chemistry and Physics 15 (4) 1975 (2015)
https://doi.org/10.5194/acp-15-1975-2015

D. B. Millet, M. Baasandorj, D. K. Farmer, J. A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J. A. de Gouw, M. Graus, L. Hu, A. Koss, B. H. Lee, F. D. Lopez-Hilfiker, J. A. Neuman, F. Paulot, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, B. J. Williams and J. Xu
(2015)
https://doi.org/10.5194/acpd-15-4537-2015

Theoretical study on the atmospheric reaction of CH3O2with OH

He Bian, Shiguo Zhang and Huiming Zhang
International Journal of Quantum Chemistry 115 (17) 1181 (2015)
https://doi.org/10.1002/qua.24946

Rate constant of the reaction between CH3O2 and OH radicals

Adriana Bossolasco, Eszter P. Faragó, Coralie Schoemaecker and Christa Fittschen
Chemical Physics Letters 593 7 (2014)
https://doi.org/10.1016/j.cplett.2013.12.052

B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, et al.
(2014)
https://doi.org/10.5194/acpd-14-24863-2014

Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance

John J. Orlando and Geoffrey S. Tyndall
Chemical Society Reviews 41 (19) 6294 (2012)
https://doi.org/10.1039/c2cs35166h

Temperature and pressure dependence of the rate coefficient for the reaction between ClO and CH3O2 in the gas-phase

Kimberley E. Leather, Asan Bacak, Ruth Wamsley, et al.
Physical Chemistry Chemical Physics 14 (10) 3425 (2012)
https://doi.org/10.1039/c2cp22834c

On the importance of the reaction between OH and RO2 radicals

A. T. Archibald, A. S. Petit, C. J. Percival, J. N. Harvey and D. E. Shallcross
Atmospheric Science Letters 10 (2) 102 (2009)
https://doi.org/10.1002/asl.216

Ab Initio Characterization of (CH3IO3) Isomers and the CH3O2 + IO Reaction Pathways

Evangelos Drougas and Agnie M. Kosmas
The Journal of Physical Chemistry A 111 (17) 3402 (2007)
https://doi.org/10.1021/jp068348p

Kinetic Study of IO Radical with RO2 (R = CH3, C2H5, and CF3) Using Cavity Ring-Down Spectroscopy

Shinichi Enami, Takashi Yamanaka, Satoshi Hashimoto, et al.
The Journal of Physical Chemistry A 110 (32) 9861 (2006)
https://doi.org/10.1021/jp0619336

A discharge–flow study of the kinetics of the reactions of IO with CH3O2 and CF3O2

Catherine S. E. Bale, Carlos E. Canosa-Mas, Dudley E. Shallcross and Richard P. Wayne
Physical Chemistry Chemical Physics 7 (10) 2164 (2005)
https://doi.org/10.1039/b501903f

Quantum Mechanical Studies of CH3ClO3 Isomers and the CH3O2+ClO Reaction Pathways

Evangelos Drougas, Abraham F. Jalbout and Agnie M. Kosmas
The Journal of Physical Chemistry A 107 (51) 11386 (2003)
https://doi.org/10.1021/jp030757n

Quantum mechanical studies on the potential energy surface of the reactions CH3+OClO, CH3O+ClO and CH3O2+Cl

E. Drougas and A.M. Kosmas
Chemical Physics Letters 369 (3-4) 269 (2003)
https://doi.org/10.1016/S0009-2614(02)01981-4

The BrO + Ch3O2 reaction: Kinetics and role in the atmospheric ozone budget

Alfonso Aranda, Georges Le Bras, Gérard La Verdet and Gilles Poulet
Geophysical Research Letters 24 (22) 2745 (1997)
https://doi.org/10.1029/97GL02686