Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Chiral Induction on the Ultrafast Event of Excited State Proton Transfer Can Probe Its Mechanism

Pratyush Ghosh, Aritra Das and Pratik Sen
ChemistrySelect 4 (41) 12197 (2019)
https://doi.org/10.1002/slct.201903249

Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

Mojgan Heshmat and Timofei Privalov
The Journal of Chemical Physics 147 (9) (2017)
https://doi.org/10.1063/1.4999708

How Fast Can a Proton-Transfer Reaction Be beyond the Solvent-Control Limit?

Ron Simkovitch, Shay Shomer, Rinat Gepshtein and Dan Huppert
The Journal of Physical Chemistry B 119 (6) 2253 (2015)
https://doi.org/10.1021/jp506011e

Update 1 of: Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer

Cyrille Costentin, Marc Robert and Jean-Michel Savéant
Chemical Reviews 110 (12) PR1 (2010)
https://doi.org/10.1021/cr100038y

Nonadiabatic Proton/Deuteron Transfer within the Benzophenone−Triethylamine Triplet Contact Radical Ion Pair:  Exploration of the Influence of Structure upon Reaction

Libby R. Heeb and Kevin S. Peters
The Journal of Physical Chemistry B 112 (2) 219 (2008)
https://doi.org/10.1021/jp073340g

Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer

Cyrille Costentin
Chemical Reviews 108 (7) 2145 (2008)
https://doi.org/10.1021/cr068065t

Further Evidence of an Inverted Region in Proton Transfer within the Benzophenone/Substituted Aniline Contact Radical Ion Pairs; Importance of Vibrational Reorganization Energy

Libby R. Heeb and Kevin S. Peters
The Journal of Physical Chemistry A 110 (20) 6408 (2006)
https://doi.org/10.1021/jp056188w

Solvation and proton transfer in polar molecule nanoclusters

Hyojoon Kim and Raymond Kapral
The Journal of Chemical Physics 125 (23) (2006)
https://doi.org/10.1063/1.2404956

Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects

Cyrille Costentin, Marc Robert and Jean-Michel Savéant
Journal of Electroanalytical Chemistry 588 (2) 197 (2006)
https://doi.org/10.1016/j.jelechem.2005.12.027

Kinetic isotope effects for non‐adiabatic proton transfer in benzophenone—N‐methylacridan contact radical ion pairs

Kevin S. Peters and Ganghyeok Kim
Journal of Physical Organic Chemistry 18 (1) 1 (2005)
https://doi.org/10.1002/poc.849

Origin of Activation Barriers in the Dimerization of Neutral Radicals:  A “Nonperfect Synchronization” Effect?

Cyrille Costentin and Jean-Michel Savéant
The Journal of Physical Chemistry A 109 (18) 4125 (2005)
https://doi.org/10.1021/jp050017+

Kinetic Isotope Effects for Nonadiabatic Proton Transfer Reactions in a Polar Environment. 2. Comparison with an Electronically Diabatic Description

Philip M. Kiefer and James T. Hynes
The Journal of Physical Chemistry A 108 (52) 11809 (2004)
https://doi.org/10.1021/jp040498h

Why Are Proton Transfers at Carbon Slow? Self-Exchange Reactions

Cyrille Costentin and Jean-Michel Savéant
Journal of the American Chemical Society 126 (45) 14787 (2004)
https://doi.org/10.1021/ja046467h

Temperature‐Dependent Solvent Polarity Effects on Adiabatic Proton Transfer Rate Constants and Kinetic Isotope Effects

Philip M. Kiefer and James T. Hynes
Israel Journal of Chemistry 44 (1-3) 171 (2004)
https://doi.org/10.1560/K3BH-D2K9-PDU9-NA80

Characterization of Solvent and Deuterium Isotope Effects on Nonadiabatic Proton Transfer in the Benzophenone/N,N-Dimethylaniline Contact Radical Ion Pair

Kevin S. Peters and Ganghyeok Kim
The Journal of Physical Chemistry A 108 (14) 2598 (2004)
https://doi.org/10.1021/jp031237v

Kinetic Isotope Effects for Nonadiabatic Proton Transfer Reactions in a Polar Environment. 1. Interpretation of Tunneling Kinetic Isotopic Effects

Philip M. Kiefer and James T. Hynes
The Journal of Physical Chemistry A 108 (52) 11793 (2004)
https://doi.org/10.1021/jp040497p

Kinetic Isotope Effects for Adiabatic Proton Transfer Reactions in a Polar Environment

Philip M. Kiefer and James T. Hynes
The Journal of Physical Chemistry A 107 (42) 9022 (2003)
https://doi.org/10.1021/jp030893s

Nonlinear Free Energy Relations for Adiabatic Proton Transfer Reactions in a Polar Environment. I. Fixed Proton Donor−Acceptor Separation

Philip M. Kiefer and James T. Hynes
The Journal of Physical Chemistry A 106 (9) 1834 (2002)
https://doi.org/10.1021/jp0134244

Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase

Philip M. Kiefer and James T. Hynes
Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase 73 (2002)
https://doi.org/10.1007/978-94-017-0059-7_4

Nonlinear Free Energy Relations for Adiabatic Proton Transfer Reactions in a Polar Environment. II. Inclusion of the Hydrogen Bond Vibration

Philip M. Kiefer and James T. Hynes
The Journal of Physical Chemistry A 106 (9) 1850 (2002)
https://doi.org/10.1021/jp013425w

Solvent Effects for Nonadiabatic Proton Transfer in the Benzophenone/N,N-Dimethylaniline Contact Radical Ion Pair

Kevin S. Peters and Ganghyeok Kim
The Journal of Physical Chemistry A 105 (17) 4177 (2001)
https://doi.org/10.1021/jp003889e

Ultrafast Proton-Transfer and Coherent Wavepacket Motion of Electronically Excited 1,8-Dihydroxyanthraquinone in Liquid Benzyl Alcohol Solution

J. Jethwa, D. Ouw, K. Winkler, N. Hartmann and P. Vöhringer
Zeitschrift für Physikalische Chemie 214 (10) (2000)
https://doi.org/10.1524/zpch.2000.214.10.1367

Femtosecond Dynamics of Double Proton Transfer in a Model DNA Base Pair:  7-Azaindole Dimers in the Condensed Phase

T. Fiebig, M. Chachisvilis, M. Manger, et al.
The Journal of Physical Chemistry A 103 (37) 7419 (1999)
https://doi.org/10.1021/jp991822p